Read by QxMD icon Read

Nuclear pore complex

Brant M Webster, David J Thaller, Jens Jäger, Sarah E Ochmann, Sapan Borah, C Patrick Lusk
The integrity of the nuclear envelope barrier relies on membrane remodeling by the ESCRTs, which seal nuclear envelope holes and contribute to the quality control of nuclear pore complexes (NPCs); whether these processes are mechanistically related remains poorly defined. Here, we show that the ESCRT-II/III chimera, Chm7, is recruited to a nuclear envelope subdomain that expands upon inhibition of NPC assembly and is required for the formation of the storage of improperly assembled NPCs (SINC) compartment. Recruitment to sites of NPC assembly is mediated by its ESCRT-II domain and the LAP2-emerin-MAN1 (LEM) family of integral inner nuclear membrane proteins, Heh1 and Heh2...
October 12, 2016: EMBO Journal
Thai V Hoang, Caroline Kizilyaprak, Danièle Spehner, Bruno M Humbel, Patrick Schultz
Focused Ion Beam milling combined with Scanning Electron Microscopy is a powerful tool to determine the 3-D organization of whole cells and tissue at an isotropic resolution of 3-5nm. This opens the possibility to quantify several cellular parameters and to provide detailed phenotypic information in normal or disease states. Here we describe Biocomputing methods to extract in an automated way characteristic features of mouse rod photoreceptor nuclei such as the shape and the volume of the nucleus; the proportion of heterochromatin; the number, density and distribution of nuclear pore complexes (NPC)...
October 8, 2016: Journal of Structural Biology
Pei Zhang, Owen E Branson, Michael A Freitas, Mark R Parthun
BACKGROUND: There are 11 variants of linker histone H1 in mammalian cells. Beyond their shared abilities to stabilize and condense chromatin, the H1 variants have been found to have non-redundant functions, the mechanisms of which are not fully understood. Like core histones, there are both replication-dependent and replication-independent linker histone variants. The histone chaperones and other factors that regulate linker histone dynamics in the cell are largely unknown. In particular, it is not known whether replication-dependent and replication-independent linker histones interact with distinct or common sets of proteins...
October 1, 2016: BMC Biochemistry
Alberto Garcia, Jose F Rodriguez Matas, Manuela T Raimondi
Recent evidence suggests that mechanical deformation of the cell nucleus regulates the nuclear import of the transcriptional activators of genes involved in primary physiological cell responses such as stem cell differentiation. In addition, this nuclear mechanosensing response is de-regulated in pathological states, such as cancer and neurodegeneration. One hypothesis that could greatly advance the field is that the deformation of the nuclear envelope activates nuclear pore complexes through a direct mechanical link...
October 10, 2016: Integrative Biology: Quantitative Biosciences From Nano to Macro
Benjamin L Timney, Barak Raveh, Roxana Mironska, Jill M Trivedi, Seung Joong Kim, Daniel Russel, Susan R Wente, Andrej Sali, Michael P Rout
Passive macromolecular diffusion through nuclear pore complexes (NPCs) is thought to decrease dramatically beyond a 30-60-kD size threshold. Using thousands of independent time-resolved fluorescence microscopy measurements in vivo, we show that the NPC lacks such a firm size threshold; instead, it forms a soft barrier to passive diffusion that intensifies gradually with increasing molecular mass in both the wild-type and mutant strains with various subsets of phenylalanine-glycine (FG) domains and different levels of baseline passive permeability...
October 10, 2016: Journal of Cell Biology
Ravikiran S Yedidi, Amatullah K Fatehi, Cordula Enenkel
The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation...
September 28, 2016: Critical Reviews in Biochemistry and Molecular Biology
Christina Li, Alexander Goryaynov, Weidong Yang
The nuclear pore complex (NPC) mediates the shuttle transport of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The permeability barrier formed by intrinsically disordered phenylalanine-glycine-rich nucleoporins (FG-Nups) in the NPC functions as the critical selective control for nucleocytoplasmic transport. Signal-independent small molecules (< 40 kDa) passively diffuse through the pore, but passage of large cargo molecules is inhibited unless they are chaperoned by nuclear transport receptors (NTRs)...
September 27, 2016: Nucleus
Liliane Christ, Camilla Raiborg, Eva M Wenzel, Coen Campsteijn, Harald Stenmark
The endosomal sorting complex required for transport (ESCRT) machinery is an assembly of protein subcomplexes (ESCRT I-III) that cooperate with the ATPase VPS4 to mediate scission of membrane necks from the inside. The ESCRT machinery has evolved as a multipurpose toolbox for mediating receptor sorting, membrane remodeling, and membrane scission, with ESCRT-III as the major membrane-remodeling component. Cellular membrane scission processes mediated by ESCRT-III include biogenesis of multivesicular endosomes, budding of enveloped viruses, cytokinetic abscission, neuron pruning, plasma membrane wound repair, nuclear pore quality control, nuclear envelope reformation, and nuclear envelope repair...
September 23, 2016: Trends in Biochemical Sciences
Giulia Bandini, John R Haserick, Edwin Motari, Dinkorma T Ouologuem, Sebastian Lourido, David S Roos, Catherine E Costello, Phillips W Robbins, John Samuelson
Toxoplasma gondii is an intracellular parasite that causes disseminated infections in fetuses and immunocompromised individuals. Although gene regulation is important for parasite differentiation and pathogenesis, little is known about protein organization in the nucleus. Here we show that the fucose-binding Aleuria aurantia lectin (AAL) binds to numerous punctate structures in the nuclei of tachyzoites, bradyzoites, and sporozoites but not oocysts. AAL also binds to Hammondia and Neospora nuclei but not to more distantly related apicomplexans...
October 11, 2016: Proceedings of the National Academy of Sciences of the United States of America
Manisha Sharma, Cara Jamieson, Christina Lui, Beric R Henderson
β-catenin is a key mediator of Wnt signaling and its deregulated nuclear accumulation can drive cancer progression. While the central armadillo (Arm) repeats of β-catenin stimulate nuclear entry, the N- and C-terminal "tail" sequences are thought to regulate turnover and transactivation. We show here that the N- and C-tails are also potent transport sequences. The unstructured tails of β-catenin, when individually fused to a GFP-reporter, could enter and exit the nucleus rapidly in live cells. Proximity ligation assays and pull-down assays identified a weak interaction between the tail sequences and the FG-repeats of nucleoporins, consistent with a possible direct translocation of β-catenin through the nuclear pore complex...
September 19, 2016: Experimental Cell Research
Wei Xie, Alexandre Chojnowski, Thomas Boudier, John S Y Lim, Sohail Ahmed, Zheng Ser, Colin Stewart, Brian Burke
The nuclear lamina is a universal feature of metazoan nuclear envelopes (NEs) [1]. In mammalian cells, it appears as a 10-30 nm filamentous layer at the nuclear face of the inner nuclear membrane (INM) and is composed primarily of A- and B-type lamins, members of the intermediate filament family [2]. While providing structural integrity to the NE, the lamina also represents an important signaling and regulatory platform [3]. Two A-type lamin isoforms, lamins A and C (LaA and LaC), are expressed in most adult human cells...
October 10, 2016: Current Biology: CB
Hui-Jun Xu, Wei-Dan Jiang, Lin Feng, Yang Liu, Pei Wu, Jun Jiang, Sheng-Yao Kuang, Ling Tang, Wu-Neng Tang, Yong-An Zhang, Xiao-Qiu Zhou
This study explored the effects of vitamin C on the physical barriers and immune barriers, and relative mRNA levels of signaling molecules in the gill of grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) (1) increased reactive oxygen species, malondialdehyde and protein carbonyl (PC) contents (P < 0.05), decreased the copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities and mRNA levels (P < 0...
September 15, 2016: Fish & Shellfish Immunology
Mahesh Chemudupati, Aysha H Osmani, Stephen A Osmani
During Aspergillus nidulans mitosis peripheral nuclear pore complex (NPC) proteins (Nups) disperse from the core NPC structure. Unexpectedly, one predicted peripheral Nup, Gle1, remains at the mitotic NE via an unknown mechanism. Gle1 affinity purification identified MtgA ( M: itotic T: ether for G: le1), which tethers Gle1 to the NE during mitosis, but not during interphase when Gle1 is at NPCs. MtgA is the ortholog of the Schizosaccharomyces pombe telomere-anchoring inner nuclear membrane protein Bqt4. Like Bqt4, MtgA has meiotic roles but is functionally distinct from Bqt4 as MtgA is not required for tethering telomeres to the NE...
September 14, 2016: Molecular Biology of the Cell
Shotaro Otsuka, Khanh Huy Bui, Martin Schorb, M Julius Hossain, Antonio Z Politi, Birgit Koch, Mikhail Eltsov, Martin Beck, Jan Ellenberg
The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and depth until they fused with the flat outer nuclear membrane...
September 15, 2016: ELife
Luke Maishman, Samson O Obado, Sam Alsford, Jean-Mathieu Bart, Wei-Ming Chen, Alexander V Ratushny, Miguel Navarro, David Horn, John D Aitchison, Brian T Chait, Michael P Rout, Mark C Field
The nuclear lamina is a filamentous structure subtending the nuclear envelope and required for chromatin organization, transcriptional regulation and maintaining nuclear structure. The trypanosomatid coiled-coil NUP-1 protein is a lamina component functionally analogous to lamins, the major lamina proteins of metazoa. There is little evidence for shared ancestry, suggesting the presence of a distinct lamina system in trypanosomes. To find additional trypanosomatid lamina components we identified NUP-1 interacting proteins by affinity capture and mass-spectrometry...
September 12, 2016: Nucleic Acids Research
Elizabeth Hinde, Kitiphume Thammasiraphop, Hien T T Duong, Jonathan Yeow, Bunyamin Karagoz, Cyrille Boyer, J Justin Gooding, Katharina Gaus
Nanoparticle size, surface charge and material composition are known to affect the uptake of nanoparticles by cells. However, whether nanoparticle shape affects transport across various barriers inside the cell remains unclear. Here we used pair correlation microscopy to show that polymeric nanoparticles with different shapes but identical surface chemistries moved across the various cellular barriers at different rates, ultimately defining the site of drug release. We measured how micelles, vesicles, rods and worms entered the cell and whether they escaped from the endosomal system and had access to the nucleus via the nuclear pore complex...
September 12, 2016: Nature Nanotechnology
Sarah A Port, Adélia Mendes, Christina Valkova, Christiane Spillner, Birthe Fahrenkrog, Christoph Kaether, Ralph H Kehlenbach
Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1- (sequestosome-) Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL...
September 9, 2016: Journal of Biological Chemistry
Hieng Chiong Tie, Viswanadh Madugula, Lei Lu
We report here an image-based method to quantify the stoichiometry of diffraction-limited sub-cellular protein complexes in vivo under spinning disk confocal microscopy. A GFP single molecule fluorescence standard was first established by immobilizing His-tagged GFP molecules onto the glass surface via nickel nitrilotriacetic acid functionalized polyethylene glycol. When endogenous nucleoporins were knocked down and replaced by the exogenously expressed and knockdown-resistant GFP-nucleoporins, the stoichiometry of the nucleoporin was estimated by the ratio of its fluorescence intensity to that of the GFP single molecules...
September 30, 2016: Biochemical and Biophysical Research Communications
Mary Dasso, Beatriz M A Fontoura
The nuclear pore complex is the primary conduit for nuclear import and export of molecules. In this issue, Gu et al. uncover a novel mechanism in which immune signaling and programmed cell death require nuclear pore rearrangement and release of sequestered cyclin-dependent kinase inhibitors to elicit immunity and death.
September 8, 2016: Cell
Florencia Del Viso, Fang Huang, Jordan Myers, Madeleine Chalfant, Yongdeng Zhang, Nooreen Reza, Joerg Bewersdorf, C Patrick Lusk, Mustafa K Khokha
Human genomics is identifying candidate genes for congenital heart disease (CHD), but discovering the underlying mechanisms remains challenging. In a patient with CHD and heterotaxy (Htx), a disorder of left-right patterning, we previously identified a duplication in Nup188. However, a mechanism to explain how a component of the nuclear pore complex (NPC) could cause Htx/CHD was undefined. Here, we show that knockdown of Nup188 or its binding partner Nup93 leads to a loss of cilia during embryonic development while leaving NPC function largely intact...
September 12, 2016: Developmental Cell
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"