Read by QxMD icon Read

homologous dependent recombination

Philippe Lefrançois, Beth Rockmill, Pingxing Xie, G Shirleen Roeder, Michael Snyder
During meiosis, chromosomes undergo a homology search in order to locate their homolog to form stable pairs and exchange genetic material. Early in prophase, chromosomes associate in mostly non-homologous pairs, tethered only at their centromeres. This phenomenon, conserved through higher eukaryotes, is termed centromere coupling in budding yeast. Both initiation of recombination and the presence of homologs are dispensable for centromere coupling (occurring in spo11 mutants and haploids induced to undergo meiosis) but the presence of the synaptonemal complex (SC) protein Zip1 is required...
October 2016: PLoS Genetics
Gabriela Barcenas-Morales, Peter Jandus, Rainer Döffinger
PURPOSE OF REVIEW: Concise overview of the field of anticytokine autoantibodies with a focus on recent developments. RECENT FINDINGS: Advances in particular in the analysis of autoantibodies to IFNγ, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IFN-1 are presented. The target epitope for anti-IFNγ autoantibodies has been found to have high homology to a protein from Aspergillus suggesting molecular mimicry as a mechanism of breaking self-tolerance...
October 13, 2016: Current Opinion in Allergy and Clinical Immunology
Anya Alayev, Rachel S Salamon, Subrata Manna, Naomi S Schwartz, Adi Y Berman, Marina K Holz
Homologous recombination (HR) is a conserved process that maintains genome stability and cell survival by repairing DNA double-strand breaks (DSBs). The RAD51-related family of proteins is involved in repair of DSBs; consequently, deregulation of RAD51 causes chromosomal rearrangements and stimulates tumorigenesis. RAD51C has been identified as a potential tumor suppressor and a breast and ovarian cancer susceptibility gene. Recent studies have also implicated estrogen as a DNA-damaging agent that causes DSBs...
October 18, 2016: Cell Cycle
Javaid Ali Gadahi, Muhammad Ehsan, Shuai Wang, ZhenChao Zhang, Yujian Wang, RuoFeng Yan, XiaoKai Song, LiXin Xu, XiangRui Li
14-3-3 proteins have been found to be an excreted/secreted antigen and assumed to be released into the host-parasite interface and described in several unicellular and multicellular parasites. However, little is known about the immunomodulatory effects of H. controtus 14-3-3 protein on host cell. In present study, 14-3-3 isoform 2 gene, designated as Hcftt-2, was amplified by reverse transcription-polymerase chain reaction (RT-PCR) from the adult H. contortus cDNA and cloned into expression plasmid pET32a (+) and expression of the recombinant protein (rHcftt-2) was induced by IPTG...
October 14, 2016: Experimental Parasitology
Min Pang, Xin-Yan Bai, Yan Li, Ji-Zhong Bai, Li-Rong Yuan, Shou-An Ren, Xiao-Yun Hu, Xin-Ri Zhang, Bao-Feng Yu, Rui Guo, Hai-Long Wang
Clara cell protein (CC16) is an anti-inflammatory protein, which is expressed in the airway epithelium. It is involved in the development of airway inflammatory diseases, including chronic obstructive pulmonary disease and asthma. However, the exact molecular mechanism underlying its anti‑inflammatory action remains to be fully elucidated. The aim of the present study was to define the protein profiles of the anti‑inflammatory effect of CC16 in lipopolysaccharide (LPS)‑treated rat tracheal epithelial (RTE) cells using shotgun proteomics...
October 12, 2016: Molecular Medicine Reports
Jiawei Guan, Qian Zhao, Weifeng Mao
PTEN is a tumor suppressor gene characterized as a phosphatase that antagonizes the phosphatidylinositol 3-kinase signaling pathway in the cytoplasm. Nuclear PTEN plays roles in chromosomal stability, in which the double-strand breaks (DSB) repair mediated by homologous recombination (HR) and non-homologous end joining (NHEJ) is critical. Herein, the role of nuclear PTEN in DSB repair and the underlying molecular mechanism was investigated in this study. Using human breast cancer BT549 and MDA-MB-231 cell lines, we reveal a specific feature of PTEN that controls poly(ADP-ribosyl)ation of Ku70 and interferes with binding of Ku70 at DSB...
October 11, 2016: Biochimica et Biophysica Acta
Wynand Paul Roos, Andrea Krumm
Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD(+) dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair...
October 13, 2016: Nucleic Acids Research
Cornelia G Spruijt, Martijn S Luijsterburg, Roberta Menafra, Rik G H Lindeboom, Pascal W T C Jansen, Raghu Ram Edupuganti, Marijke P Baltissen, Wouter W Wiegant, Moritz C Voelker-Albert, Filomena Matarese, Anneloes Mensinga, Ina Poser, Harmjan R Vos, Hendrik G Stunnenberg, Haico van Attikum, Michiel Vermeulen
NuRD (nucleosome remodeling and histone deacetylase) is a versatile multi-protein complex with roles in transcription regulation and the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The MYND domain of ZMYND8 directly interacts with PPPLΦ motifs in the NuRD subunit GATAD2A. Both GATAD2A and GATAD2B exclusively form homodimers and define mutually exclusive NuRD subcomplexes. ZMYND8 and NuRD share a large number of genome-wide binding sites, mostly active promoters and enhancers...
October 11, 2016: Cell Reports
Donna J Palmer, Nathan C Grove, Jordan Ing, Ana M Crane, Koen Venken, Brian R Davis, Philip Ng
Helper-dependent adenoviral vectors mediate high efficiency gene editing in induced pluripotent stem cells without needing a designer nuclease thereby avoiding off-target cleavage. Because of their large cloning capacity of 37 kb, helper-dependent adenoviral vectors with long homology arms are used for gene editing. However, this makes vector construction and recombinant analysis difficult. Conversely, insufficient homology may compromise targeting efficiency. Thus, we investigated the effect of homology length on helper-dependent adenoviral vector targeting efficiency at the cystic fibrosis transmembrane conductance regulator locus in induced pluripotent stem cells and found a positive correlation...
October 11, 2016: Molecular Therapy. Nucleic Acids
Adel Zarei, Christopher P Trobacher, Barry J Shelp
Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD(+)-dependent aminoaldehyde dehydrogenase (AMADH). Here, two AMADH homologs were chosen (AtALDH10A8 and AtALDH10A9) as candidates for encoding 4-aminobutanal dehydrogenase activity for GABA synthesis. The two genes were cloned and soluble recombinant proteins were produced in Escherichia coli...
October 11, 2016: Scientific Reports
Tyler S Machovina, Rana Mainpal, Anahita Daryabeigi, Olivia McGovern, Dimitra Paouneskou, Sara Labella, Monique Zetka, Verena Jantsch, Judith L Yanowitz
Crossover (CO) recombination creates a physical connection between homologs that promotes their proper segregation at meiosis I (MI). Failure to realize an obligate CO causes homologs to attach independently to the MI spindle and separate randomly, leading to nondisjunction. However, mechanisms that determine whether homolog pairs have received crossovers remain mysterious. Here we describe a surveillance system in C. elegans that monitors recombination intermediates and couples their formation to meiotic progression...
October 1, 2016: Current Biology: CB
Michael Tsabar, Wade M Hicks, Olga Tsaponina, James E Haber
Homologous recombination (HR) is an evolutionarily conserved pathway in eukaryotes that repairs a double-strand break (DSB) by copying homologous sequences from a sister chromatid, a homologous chromosome or an ectopic location. Recombination is challenged by the packaging of DNA into nucleosomes, which may impair the process at many steps, from resection of the DSB ends to the re-establishement of nucleosomes after repair. However, nucleosome dynamics during DSB repair have not been well described, primarily because of a lack of well-ordered nucleosomes around a DSB...
September 28, 2016: DNA Repair
Samantha D M Arras, Sheena M H Chua, Maha S I Wizrah, Joshua A Faint, Amy S Yap, James A Fraser
Low rates of homologous integration have hindered molecular genetic studies in Cryptococcus neoformans over the past 20 years, and new tools that facilitate genome manipulation in this important pathogen are greatly needed. To this end, we have investigated the use of a Class 2 CRISPR system in C. neoformans (formerly C. neoformans var. grubii). We first expressed a derivative of the Streptococcus pyogenes Cas9 nuclease in C. neoformans, and showed that it has no effect on growth, production of virulence factors in vitro, or virulence in a murine inhalation model...
2016: PloS One
Ji Chen, Feng Deng, Mengsheng Deng, Jincheng Han, Jianbin Chen, Li Wang, Shen Yan, Kai Tong, Fan Liu, Mengliang Tian
Bacterial homologous chloroplast-targeted Obg GTPases (ObgCs) belong to the plant-typical Obg group, which is involved in diverse physiological processes during chloroplast development. However, the evolutionarily conserved function of ObgC in plants remains elusive and requires further investigation. In this study, we identified DoObgC from an epiphytic plant Dendrobium officinale and demonstrated the characteristics of DoObgC. Sequence analysis indicated that DoObgC is highly conserved with other plant ObgCs, which contain the chloroplast transit peptide (cTP), Obg fold, G domain, and OCT regions...
October 6, 2016: DNA and Cell Biology
Aimee Jaramillo-Lambert, Amy S Fabritius, Tyler J Hansen, Harold E Smith, Andy Golden
Topoisomerase II alleviates DNA entanglements that are generated during mitotic DNA replication, transcription, and sister chromatid separation. In contrast to mitosis, meiosis has two rounds of chromosome segregation following one round of DNA replication. In meiosis II, sister chromatids segregate from each other similar to mitosis. Meiosis I, on the other hand, segregates homologs, which requires pairing, synapsis, and recombination. The exact role that topoisomerase II plays during meiosis is unknown. In a screen re-examining Caenorhabditis elegant legacy mutants isolated thirty years ago, we identified a novel allele of the gene encoding topoisomerase II, top-2(it7) In this study, we demonstrate that top-2(it7) males produce dead embryos, even when fertilizing wild-type oocytes...
October 5, 2016: Genetics
Satish K Tadi, Carine Tellier-Lebègue, Clément Nemoz, Pascal Drevet, Stéphane Audebert, Sunetra Roy, Katheryn Meek, Jean-Baptiste Charbonnier, Mauro Modesti
In mammalian cells, classical non-homologous end joining (c-NHEJ) is critical for DNA double-strand break repair induced by ionizing radiation and during V(D)J recombination in developing B and T lymphocytes. Recently, PAXX was identified as a c-NHEJ core component. We report here that PAXX-deficient cells exhibit a cellular phenotype uncharacteristic of a deficiency in c-NHEJ core components. PAXX-deficient cells display normal sensitivity to radiomimetic drugs, are proficient in transient V(D)J recombination assays, and do not shift toward higher micro-homology usage in plasmid repair assays...
October 4, 2016: Cell Reports
Chiaki Noguchi, Grant Grothusen, Vinesh Anandarajan, Marta Martínez-Lage García, Daniel Terlecky, Krysten Corzo, Katsunori Tanaka, Hiroshi Nakagawa, Eishi Noguchi
Acetaldehyde, a primary metabolite of alcohol, forms DNA adducts and disrupts the DNA replication process, causing genomic instability, a hallmark of cancer. Indeed, chronic alcohol consumption accounts for approximately 3.6% of all cancers worldwide. However, how the adducts are prevented and repaired after acetaldehyde exposure is not well understood. In this report, we used the fission yeast Schizosaccharomyces pombe as a model organism to comprehensively understand the genetic controls of DNA damage avoidance in response to acetaldehyde...
September 29, 2016: Cell Cycle
Pavan B Narayanaswamy, Sergey Tkachuk, Hermann Haller, Inna Dumler, Yulia Kiyan
Mechanisms of DNA damage and repair signaling are not completely understood that hinder the efficiency of cancer therapy. Urokinase-type plasminogen activator receptor (PLAUR) is highly expressed in most solid cancers and serves as a marker of poor prognosis. We show that PLAUR actively promotes DNA repair in cancer cells. On the contrary, downregulation of PLAUR expression results in delayed DNA repair. We found PLAUR to be essential for activation of Checkpoint kinase 1 (CHK1); maintenance of cell cycle arrest after DNA damage in a TP53-dependent manner; expression, nuclear import and recruitment to DNA-damage foci of RAD51 recombinase, the principal protein involved in the homologous recombination repair pathway...
2016: Cell Death & Disease
Andrew A Kelso, Steven D Goodson, Suchitra Chavan, Amanda F Say, Audrey Turchick, Deepti Sharma, LeAnna L Ledford, Erin Ratterman, Kristin Leskoske, Ada V King, Christopher C Attaway, Yura Bandera, Stephen H Foulger, Alexander V Mazin, Lesly A Temesvari, Michael G Sehorn
The protozoan parasite responsible for human amoebiasis is Entamoeba histolytica. An important facet of the life cycle of E. histolytica involves the conversion of the mature trophozoite to a cyst. This transition is thought to involve homologous recombination (HR), which is dependent upon the Rad51 recombinase. Here, a biochemical characterization of highly purified ehRad51 protein is presented. The ehRad51 protein preferentially binds ssDNA, forms a presynaptic filament and possesses ATP hydrolysis activity that is stimulated by the presence of DNA...
September 24, 2016: Molecular and Biochemical Parasitology
Hyunwoo Jeon, Pradeepraj Durairaj, Dowoo Lee, Md Murshidul Ahsan, Hyungdon Yun
Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and plays major share in fungal adaptations due to their essential roles in the production of metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation of substrates. Though, fungal CYP dependent biotransformation for the selective oxidation of organic compounds in yeast system is advantageous, it often suffers due to the shortage of intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system...
September 23, 2016: Journal of Microbiology and Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"