Read by QxMD icon Read

neuropathic pain miRNA

Jun Zhou, Qingming Xiong, Hongtao Chen, Chengxiang Yang, Youling Fan
Neuropathic pain (NP) is caused by damage to the nervous system, resulting in aberrant pain, which is associated with gene expression changes in the sensory pathway. However, the molecular mechanisms are not fully understood. A non-coding Ribose Nucleic Acid (ncRNA) is an RNA molecule that is not translated into a protein. NcRNAs are involved in many cellular processes, and mutations or imbalances of the repertoire within the body can cause a variety of diseases. Although ncRNAs have recently been shown to play a role in NP pathogenesis, the specific effects of ncRNAs in NP remain largely unknown...
2017: Frontiers in Molecular Neuroscience
Mingxia Ding, Weihong Shen, Yifeng Hu
Objective. : This study explored the putative mechanisms of miRNAs in the anterior cingulate cortex (ACC) in modulation of neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve. Design and Methods.:  MiRNA microarray and quantitative real-time polymerase chain reaction (qRT-PCR) were used to examine miRNA expression profile in the ACC after CCI of the sciatic nerve. MiRNA mimics were then used to examine the role of miR-539 in the ACC in modulation of NR2B subunit expression and neuropathic pain in rats...
March 30, 2017: Pain Medicine: the Official Journal of the American Academy of Pain Medicine
Jing Liu, Yaochi Wu
Electro-acupuncture (EA) has been proven to contribute towards neurologic and functional recoveries in spinal cord injury (SCI), but the underlying mechanism remains largely unknown especially regarding the effects of preventing neuronal apoptosis and alleviating neuropathic pain involved in the development of EA. In this study, we evaluated the effect of EA treatment in an animal model of SCI using the Basso, Beattie, and Bresnahan (BBB) score method, lesion volume by cresyl violet staining and neuronal apoptosis by TUNEL staining...
March 11, 2017: Biomedicine & Pharmacotherapy, Biomédecine & Pharmacothérapie
Xue-Tao Yan, Li-Juan Ji, Zhiyu Wang, Xingjun Wu, Quan Wang, Shujie Sun, Jing-Min Lu, Yang Zhang
Emerging evidence suggests that microRNAs (miRNAs) play a critical role in the pathogenesis of neuropathic pain. However, the exact role of miRNAs in regulating neuropathic pain remains largely unknown. In this study, we aimed to investigate the potential role of miR-93 in a rat model of neuropathic pain induced by chronic constriction sciatic nerve injury (CCI). We found a significant decrease of miR-93 in the spinal cord of CCI rats compared with sham rats. Overexpression of miR-93 significantly alleviated neuropathic pain development and reduced inflammatory cytokine expression, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 in CCI rats...
March 8, 2017: International Immunopharmacology
Feng Lv, Yingzi Huang, Wentao Lv, Longbiao Yang, Feng Li, Jingli Fan, Jianmin Sun
BACKGROUND Intervertebral disc degeneration (IDD) has been widely recognized as a major contributor to low back pain. Accumulating evidence suggests that IDD is linked to various pro-inflammatory cytokines and metabolites. Recently, numerous studies have demonstrated that microRNAs (miRNAs) play a pivotal role in the development of most disorders, including degenerative disc diseases. Previous reports have revealed that miRNA-146a (miR-146a) could attenuate neuropathic pain in the spinal cord. The aim of this study was to investigate the role of miR-146a in the inflammatory response of IDD...
February 5, 2017: Medical Science Monitor: International Medical Journal of Experimental and Clinical Research
Wenbo Sun, Limin Zhang, Rui Li
Neuropathic pain is chronic pain caused by lesions or diseases of the somatosensory system and existing tolerance to currently available analgesics. MicroRNAs (miRNAs) have been widely studied in the development of neuropathic pain and neuro-inflammation resulting from nerve injury. However, the precise mechanism of miRNAs involved in neuropathic pain remains largely unknown. In the present study, we investigated the vital roles of miR-206 and its putative target gene, brain-derived neurotrophic factor (BDNF), in neuropathic pain in the rat model of chronic constriction injury (CCI)...
January 24, 2017: Neuroscience Letters
Zhaoyun Yang, Junmei Xu, Rong Zhu, Lei Liu
BACKGROUND Neuropathic pain (NPP) arises from a lesion or dysfunction of the somatosensory nervous system. Recent studies have demonstrated multiple microRNAs (miRNAs) play key roles in NPP development. This study aimed to investigate the effects of miR-128 on microglial cells. MATERIAL AND METHODS We established a compressive spinal cord injury (SCI) model and collected the spinal cord segment-derived conditioned medium (CM). We then measured the expression of miR-128 in the murine microglial cell line BV2 treated with CM-SCI or CM obtained from control (CM-NC)...
January 23, 2017: Medical Science Monitor: International Medical Journal of Experimental and Clinical Research
Naomi Ito, Atsushi Sakai, Noriko Miyake, Motoyo Maruyama, Hirotoshi Iwasaki, Koichi Miyake, Takashi Okada, Atsuhiro Sakamoto, Hidenori Suzuki
BACKGROUND AND PURPOSE: Although oxaliplatin is an effective anti-cancer platinum compound, it can cause painful chronic neuropathy, and its molecular mechanisms are poorly understood. MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression in a sequence-specific manner. Although miRNAs have been increasingly recognized as important modulators in a variety of pain conditions, their involvement in chemotherapy-induced neuropathic pain is unknown. EXPERIMENTAL APPROACH: Oxaliplatin-induced chronic neuropathic pain was induced in rats by i...
March 2017: British Journal of Pharmacology
Hsueh-Ling Chang, Hung-Chen Wang, Yi-Ta Chunag, Chao-Wen Chou, I-Ling Lin, Chung-Sheng Lai, Lin-Li Chang, Kuang-I Cheng
The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague-Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7...
December 24, 2016: Journal of Molecular Neuroscience: MN
Jens Heyn, Benjamin Luchting, Ludwig C Hinske, Max Hübner, Shahnaz C Azad, Simone Kreth
BACKGROUND: Accumulating evidence indicates that neuropathic pain is a neuro-immune disorder with enhanced activation of the immune system. Recent data provided proof that neuropathic pain patients exhibit increased numbers of immunosuppressive regulatory T cells (Tregs), which may represent an endogenous attempt to limit inflammation and to reduce pain levels. We here investigate the molecular mechanisms underlying these alterations. METHODS: Our experimental approach includes functional analyses of primary human T cells, 3'-UTR reporter assays, and expression analyses of neuropathic pain patients' samples...
2016: Journal of Neuroinflammation
Ghada M El-Lithy, Wesam M El-Bakly, Marwa Matboli, Hadwa A Abd-Alkhalek, Somaia I Masoud, May Hamza
Diabetic neuropathy (DN) is a common complication of diabetes mellitus that is hardly reversible at the late stages. Since treatment of neuropathic pain is predominantly symptomatic, a prophylactic measure would be useful. Both ibuprofen and L-arginine exert antiallodynic effects on chronic constriction injury (CCI)-induced cold allodynia. Furthermore, ibuprofen is effective in CCI-induced mechanical allodynia. The aim of the study was to assess the antiallodynic effect of prophylactic ibuprofen and L-arginine in streptozotocin-induced DN in rats and to further investigate the role of spinal miR-155 and nitric oxide (NO) in this effect...
June 23, 2016: Translational Research: the Journal of Laboratory and Clinical Medicine
M Leinders, N Üçeyler, R A Pritchard, C Sommer, L S Sorkin
Alterations in the neuro-immune balance play a major role in the pathophysiology of chronic neuropathic pain. MicroRNAs (miRNA) can regulate both immune and neuronal processes and may function as master switches in chronic pain development and maintenance. We set out to analyze the role of miR-132-3p, first in patients with peripheral neuropathies and second in an animal model of neuropathic pain. We initially determined miR-132-3p expression by measuring its levels in white blood cells (WBC) of 30 patients and 30 healthy controls and next in sural nerve biopsies of 81 patients with painful or painless inflammatory or non-inflammatory neuropathies based on clinical diagnosis...
September 2016: Experimental Neurology
Mirna Situm, Maja Kolić, Sanja Spoljar
Wound represents a disruption of anathomic and physiologic continuity of the skin. Regarding to the healing process, wounds can be classified as acute or chronic wounds. Quality of life is primarily concerned with the impact of chronic wounds. A wound is considered chronic if healing does not occur within expected period of time regarding to its etiology and localization. Chronic wounds can be classified as typical and atypical. The majority of wounds (95 percent) are typical ones which include ischaemic, neurotrophic and hypostatic ulcer and two separate entities: diabetic foot and decubital ulcers...
March 2016: Acta Medica Croatica: C̆asopis Hravatske Akademije Medicinskih Znanosti
Li Xia, Yunlong Zhang, Tieli Dong
Neuropathic pain results in considerable trouble to people's physical and mental health. The pathophysiological mechanisms underlying its occurrence and development remain unclear. A large number of experiments show that microRNAs (miRNAs) play a major role in the pathogenesis of neuropathic pain and neuroinflammation resulting from nerve injury. Among various miRNAs, microRNA-221 (miR-221) overexpression has been reported in a chronic constrictive injury (CCI)-induced rat model of neuropathic pain. However, the role of miR-221 in the regulation of neuropathic pain is unknown...
July 2016: Journal of Molecular Neuroscience: MN
Naosuke Hori, Michiko Narita, Akira Yamashita, Hiroshi Horiuchi, Yusuke Hamada, Takashige Kondo, Moe Watanabe, Katsuhide Igarashi, Miho Kawata, Masahiro Shibasaki, Mitsuaki Yamazaki, Naoko Kuzumaki, Eiichi Inada, Takahiro Ochiya, Masako Iseki, Tomohisa Mori, Minoru Narita
A multiplex analysis for profiling the expression of candidate microRNAs (miRNAs), which are small noncoding RNAs that function as key post-transcriptional regulators, may lead to a better understanding of the complex machinery of neuropathic pain. In the present study, we performed a miRNA array analysis using tissues of the dorsal root ganglion (DRG), a primary site for pain processing, obtained from mice with partial sciatic nerve ligation. Among 1135 total miRNAs, 26 miRNAs showed up-regulation (more than 2-fold change) and only 4 miRNAs showed down-regulation (less than 0...
August 2016: Synapse
Casey O Ligon, Rachel D Moloney, Beverley Greenwood-Van Meerveld
Chronic pain is a multifaceted and complex condition. Broadly classified into somatic, visceral, or neuropathic pain, it is poorly managed despite its prevalence. Current drugs used for the treatment of chronic pain are limited by tolerance with long-term use, abuse potential, and multiple adverse side effects. The persistent nature of pain suggests that epigenetic machinery may be a critical factor driving chronic pain. In this review, we discuss the latest insights into epigenetic processes, including DNA methylation, histone modifications, and microRNAs, and we describe their involvement in the pathophysiology of chronic pain and whether epigenetic modifications could be applied as future therapeutic targets for chronic pain...
April 2016: Journal of Pharmacology and Experimental Therapeutics
Pu Jiangpan, Meng Qingsheng, Yang Zhiwen, Zhu Tao
BACKGROUND: Neuropathic pain is an incurable disease which is defined as a chronic pain caused by a disease or lesion of the nervous systems. Current treatments can provide a long-lasting pain relief only in a very limited number of patients with neuropathic pain. MicroRNA can regulate multiple genes and pathways involved in human diseases. This review focuses on: a) Molecular mechanisms of microRNA biogenesis. b) Targeting, modifications, and delivery of microRNAs. c) Aberrant expression of microRNAs and their potential therapeutic targets in neuropathic pain...
2016: Current Drug Metabolism
Melissa T Manners, Yuzhen Tian, Zhaolan Zhou, Seena K Ajit
Nerve injury induces chronic pain and dysregulation of microRNAs in dorsal root ganglia (DRG). Several downregulated microRNAs are predicted to target Mecp2. MECP2 mutations cause Rett syndrome and these patients report decreased pain perception. We confirmed MeCP2 upregulation in DRG following nerve injury and repression of MeCP2 by miRNAs in vitro. MeCP2 regulates brain-derived neurotrophic factor (BDNF) and downregulation of MeCP2 by microRNAs decreased Bdnf in vitro. MeCP2 T158A mice exhibited reduced mechanical sensitivity and Mecp2-null and MeCP2 T158A mice have decreased Bdnf in DRG...
2015: FEBS Open Bio
Jizheng Zhang, Hua Zhang, Tingting Zi
The function of microRNAs (miRNAs or miRs) in regulating neuropathic pain has attracted increasing attention in recent years. However, the precise mechanism of miRNAs in neuropathic pain remains largely unknown. In the present study, an important role of miR‑141 and its putative target gene, high‑mobility group box‑1 (HMGB1), was demonstrated in a rat model of neuropathic pain induced by chronic constriction injury (CCI). The expression of miR‑141 was significantly downregulated in the dorsal root ganglion of rats following CCI surgery...
November 2015: International Journal of Molecular Medicine
Jörn Lötsch, Ellen Niederberger, Alfred Ultsch
Micro-ribonucleic acids (miRNAs) play a role in pain, based on studies on models of neuropathic or inflammatory pain and clinical evidence. The present analysis made extensive use of computational biology, knowledge discovery methods, publicly available databases and data mining tools to merge results from genetic and miRNA research into an analysis of the systems biological roles of miRNAs in pain. We identified that about one-third of miRNAs detected through nociceptive research have been associated with a mere 18 regulated genes...
November 2015: Human Genetics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"