Read by QxMD icon Read


Stefan Kramel, Greg A Voth, Saskia Tympel, Federico Toschi
We introduce a new particle shape which shows preferential rotation in three dimensional homogeneous isotropic turbulence. We call these particles chiral dipoles because they consist of a rod with two helices of opposite handedness, one at each end. 3D printing is used to fabricate these particles with a length in the inertial range and their rotations are tracked in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles preferentially align with their long axis along the extensional eigenvectors of the strain rate tensor, and the helical ends respond to the extensional strain rate with a mean spinning rate that is nonzero...
October 7, 2016: Physical Review Letters
Jie Tao, Jiumeng Zhang, Yu Hu, Yuan Yang, Zhiyuan Gou, Ting Du, Jian Mao, Maling Gou
Conventional surgical methods can not completely remove the tumor cells, and an inevitable recurrence always results in death. In this study, we prepared a conformal hydrogel nanocomposite with potential to inhibit the recurrence of glioma. Based on the MRI of a patient's brain tumor cavity (BTC), we 3D-printed a mould for preparing the customized implants that could match the resection cavity. The obtained macroporous hydrogel, containing paclitaxel (PTX) nanoparticles, could sustained release PTX. From the confocal microscopy image, we could detect that the hydrogel nanocomposite combined with nanoparticles uniformly...
October 21, 2016: Journal of Biomaterials Science. Polymer Edition
David S Freedman, Joseph B Schroeder, Gregory I Telian, Zhengyang Zhang, Smrithi Sunil, Jason T Ritt
OBJECTIVE: Behavioral neuroscience studies in freely moving rodents require small, light-weight implants to facilitate neural recording and stimulation. Our goal was to develop an integrated package of 3D printed parts and assembly aids for labs to rapidly fabricate, with minimal training, an implant that combines individually positionable microelectrodes, an optical fiber, zero insertion force (ZIF-clip) headstage connection, and secondary recording electrodes, e.g. for electromyography (EMG)...
October 20, 2016: Journal of Neural Engineering
Ahu Gümrah Dumanlı
Cellulose is a natural linear biopolymer, which constitutes through the assembly of cellulose nanofibrils in a hierarchical order. Nanocelluloses in particular show great promise as a cost-effective advanced material for biomedical applications because of their biocompatibility, biodegradability, and low cytotoxicity. Moreover, with their chemical functionality they can be easily modified to yield useful products. While nature uses the hierarchical nanostructure of the cellulose as the load-bearing constituent in plants, a significant amount of research has been directed toward the fabrication of advanced cellulosic materials with various nanostructures and functional properties...
October 14, 2016: Current Medicinal Chemistry
Peter A Lioufas, Michelle R Quayle, James C Leong, Paul G McMenamin
: To explore the potential viability and limitations of 3D printed models of children with cleft palate deformity. BACKGROUND: The advantages of 3D printed replicas of normal anatomical specimens have previously been described. The creation of 3D prints displaying patient-specific anatomical pathology for surgical planning and interventions is an emerging field. Here we explored the possibility of taking rare pediatric radiographic data sets to create 3D prints for surgical education...
September 2016: Plastic and Reconstructive Surgery. Global Open
Kevin Cook, Geoffrey Balle, John Canning, Loïc Chartier, Tristan Athanaze, M A Hossain, Chunyang Han, Jade-Edouard Comatti, Yanhua Luo, Gang-Ding Peng
Optical fiber is drawn from a dual-head 3D printer fabricated preform made of two optically transparent plastics with a high-index core (NA∼0.25, V>60). The asymmetry observed in the fiber arises from asymmetry in the 3D printing process. The highly multimode optical fiber has losses measured by cut-back as low as α∼0.44  dB/cm in the near IR.
October 1, 2016: Optics Letters
Thomas J Hinton, Andrew Hudson, Kira Pusch, Andrew Lee, Adam W Feinberg
Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In the FRE printing process, the Carbopol support acts as a Bingham plastic that yields and fluidizes when the syringe tip of the 3D printer moves through it, but acts as a solid for the PDMS extruded within it...
October 10, 2016: ACS Biomaterials Science & Engineering
Shruti Digholkar, V N V Madhav, Jayant Palaskar
PURPOSE: The purpose of this study was to evaluate and compare the flexural strength and microhardness of provisional restorative materials fabricated utilizing rapid prototyping (RP), Computer Assisted Designing and Computer Assisted Milling (CAD-CAM) and conventional method. MATERIALS AND METHODS: Twenty specimens of dimensions 25 mm × 2 mm × 2 mm (ADA-ANSI specification #27) were fabricated each using: (1) Three dimensional (3D) printed light-cured micro-hybrid filled composite by RP resin group, (2) a milled polymethyl methacrylate (CH) using CAD-CAM (CC resin group), and (3) a conventionally fabricated heat activated polymerized CH resin group...
October 2016: Journal of Indian Prosthodontic Society
Carla Severini, Antonio Derossi
Within the concept of personalized nutrition we want to introduce the terms of "customized food formula" which refers to the preparation (at home) or the production (at industrial level) of new food formulations having nutrients and functional compounds necessary to prevent diseases or to reduce the risk for each subject (or subjects category) who exhibit a susceptibility to diseases. Three-dimensional (3D) printing is a group of technologies of growing interest able to produce, slice by slice, materials with any desired shape, dimension, and structure properties...
November 2016: Journal of Clinical Gastroenterology
Kimberly Plevniak, Matthew Campbell, Timothy Myers, Abby Hodges, Mei He
Clinical diagnosis requiring central facilities and site visits can be burdensome for patients in resource-limited or rural areas. Therefore, development of a low-cost test that utilizes smartphone data collection and transmission would beneficially enable disease self-management and point-of-care (POC) diagnosis. In this paper, we introduce a low-cost iPOC(3D) diagnostic strategy which integrates 3D design and printing of microfluidic POC device with smartphone-based disease diagnosis in one process as a stand-alone system, offering strong adaptability for establishing diagnostic capacity in resource-limited areas and low-income countries...
September 2016: Biomicrofluidics
Cheng Zhong, Hai-Yang Xie, Lin Zhou, Xiao Xu, Shu-Sen Zheng
BACKGROUND: Because of an increasing discrepancy between the number of potential liver graft recipients and the number of organs available, scientists are trying to create artificial liver to mimic normal liver function and therefore, to support the patient's liver when in dysfunction. 3D printing technique meets this purpose. The present study was to test the feasibility of 3D hydrogel scaffolds for liver engineering. METHODS: We fabricated 3D hydrogel scaffolds with a bioprinter...
October 2016: Hepatobiliary & Pancreatic Diseases International: HBPD INT
Lisa Elviri, Annalisa Bianchera, Carlo Bergonzi, Ruggero Bettini
The main target of tissue engineering is the preparation and application of adequate materials for the design and production of scaffolds, that possess properties promoting cell adhesion, proliferation and differentiation. The use of natural polysaccharides, such as chitosan, to prepare hydrogels for wound healing and controlled drug delivery is a research topic of wide and increasing interest. Areas covered: This review presents the latest results and challenges in the preparation of chitosan and chitosan-based scaffold/hydrogel for wound healing applications...
October 12, 2016: Expert Opinion on Drug Delivery
Katherine R Kavanagh, Valerie Cote, Yvonne Tsui, Simon Kudernatsch, Donald R Peterson, Tulio A Valdez
OBJECTIVE: Simulation to acquire and test technical skills is an essential component of medical education and residency training in both surgical and nonsurgical specialties. High-quality simulation education relies on the availability, accessibility, and reliability of models. The objective of this work was to describe a practical pediatric laryngeal model for use in otolaryngology residency training. Ideally, this model would be low-cost, have tactile properties resembling human tissue, and be reliably reproducible...
October 12, 2016: Laryngoscope
L Sim
The purpose of this study was to evaluate if MED610 3D printed material can be used as a surrogate for acrylic in the manufacturing of a replacement insert used in an eye plaque brachytherapy applicator. Measurement of the dose distributions from a standard acrylic insert were compared with dose obtained from MED610 3D printed replica using GafChromic(®) EBT3 films. The study used a 15 mm Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaque applicator loaded with I-125 (model 6711) seeds...
October 11, 2016: Australasian Physical & Engineering Sciences in Medicine
Samuel R Barber, Elliott D Kozin, Matthew Dedmon, Brian M Lin, Kyuwon Lee, Sumi Sinha, Nicole Black, Aaron K Remenschneider, Daniel J Lee
INTRODUCTION: Surgical simulators are designed to improve operative skills and patient safety. Transcanal Endoscopic Ear Surgery (TEES) is a relatively new surgical approach with a slow learning curve due to one-handed dissection. A reusable and customizable 3-dimensional (3D)-printed endoscopic ear surgery simulator may facilitate the development of surgical skills with high fidelity and low cost. Herein, we aim to design, fabricate, and test a low-cost and reusable 3D-printed TEES simulator...
November 2016: International Journal of Pediatric Otorhinolaryngology
Hongshi Ma, Jian Luo, Zhe Sun, Lunguo Xia, Mengchao Shi, Mingyao Liu, Jiang Chang, Chengtie Wu
Primary bone cancer brings patients great sufferings. To deal with the bone defects resulted from cancer surgery, biomaterials with good bone-forming ability are necessary to repair bone defects. Meanwhile, in order to prevent possible tumor recurrence, it is essential that the remaining tumor cells around bone defects are completely killed. However, there are few biomaterials with the ability of both cancer therapy and bone regeneration until now. Here, we fabricated a 3D-printed bioceramic scaffold with a uniformly self-assembled Ca-P/polydopamine nanolayer surface...
December 2016: Biomaterials
Joseph M DeSimone, Sue J Mecham, Crista L Farrell
This article was written to shed light on a series of what some have stated are not so obvious connections that link polymer synthesis in supercritical CO2 to cancer treatment and vaccines, nonflammable polymer electrolytes for lithium ion batteries, and 3D printing. In telling this story, we also attempt to show the value of versatility in applying one's primary area of expertise to address pertinent questions in science and in society. In this Outlook, we attempted to identify key factors to enable a versatile and nimble research effort to take shape in an effort to influence diverse fields and have a tangible impact in the private sector through the translation of discoveries into the marketplace...
September 28, 2016: ACS Central Science
Xingliang Dai, Cheng Ma, Qing Lan, Tao Xu
Glioma is still difficult to treat because of its high malignancy, high recurrence rate, and high resistance to anticancer drugs. An alternative method for research of gliomagenesis and drug resistance is to use in vitro tumor model that closely mimics the in vivo tumor microenvironment. In this study, we established a 3D bioprinted glioma stem cell model, using modified porous gelatin/alginate/fibrinogen hydrogel that mimics the extracellular matrix. Glioma stem cells achieved a survival rate of 86.92%, and proliferated with high cellular activity immediately following bioprinting...
October 11, 2016: Biofabrication
P Flood, L Alvarez, E G Reynaud
Three-dimensional (3D) tissue models are invaluable tools that can closely reflect the in vivo physiological environment. However, they are usually difficult to develop, have a low throughput and are often costly; limiting their utility to most laboratories. The recent availability of inexpensive additive manufacturing printers and open source 3D design software offers us the possibility to easily create affordable 3D cell culture platforms. To demonstrate this, we established a simple, inexpensive and robust method for producing arrays of free-floating epithelial micro-tissues...
October 11, 2016: Biofabrication
Celine A Mandon, Loïc Jacques Blum, Christophe Andre Marquette
3D printing technologies will impact in a near future the biosensor community, both at the sensor prototyping level and the sensing layer or-ganization level. The present study aimed at demonstrating the capacity of one 3D printing technique, the Digital Light Processing (DLP), to produce hydrogel sensing layers with 3D shapes unreachable using conventional molding procedures. The first model of sensing layer was com-posed of a sequential enzymatic reaction (glucose oxidase and peroxidase) which generated chemiluminescent signal in the presence of glucose and luminol...
October 11, 2016: Analytical Chemistry
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"