Read by QxMD icon Read


Xiaojing Lv, Jianghai Lin, Liang Luo, Dou Zhang, Senlin Lei, Wenjuan Xiao, Yuan Xu, Yingxue Gong, Zehuan Liu
Sodium methoxide (CH3ONa) with glycerol pretreatment (CWGP) was performed to improve the enzymatic digestibility of sugarcane bagasse (SCB). Response surface methodology was utilized to optimize the CWGP parameters for pretreating SCB from the perspective of total fermentable sugar yield (TFSY) and total fermentable sugar concentration (TFSC). Under the optimal CWGP conditions, 0.5666g/g of TFSY (0.82% CH3ONa, 1.11h, 150°C) and 17.75g/L of TFSC (0.87% CH3ONa, 1.38h, 149.27°C) were achieved, corresponding to delignification of 79...
September 22, 2017: Bioresource Technology
Xue Li, Edmund Mupondwa, Lope Tabil
This study undertakes technoeconomic analysis of commercial production of hydro-processed renewable jet (HRJ) fuel from camelina oil in the Canadian Prairies. An engineering economic model designed in SuperPro Designer® investigated capital investment, scale, and profitability of producing HRJ and co-products (biodiesel, naphtha, LPG, and propane) based on biorefinery plant sizes of 112.5-675 million L annum(-1). Under base case scenario, the minimum selling price (MSP) of HRJ was $1.06 L(-1) for a biorefinery plant with size of 225 million L...
September 28, 2017: Bioresource Technology
Mehdi Abdollahi, Masoud Rezaei, Ali Jafarpour, Ingrid Undeland
Collagen and collagen hydrolysate (CH) was recovered from the bone and skin containing sediment residue emerging during pH-shift-based protein isolation from silver carp. Hydrolysis resulted in higher yield (15.1-15.4%) compared to collagen isolation by acid or pepsin (3.1-5.9%) (p<0.05). Isolated collagens were characterized as type I and maintained their triple-helical structure, confirmed by SDS-PAGE and FTIR. Pepsin-hydrolysis and sequential hydrolysis by pepsin and trypsin hydrolyzed all heavy molecular weight chains of collagen but sequential hydrolysis yielded higher degree of hydrolysis...
March 1, 2018: Food Chemistry
Fei Zhang, Fengwu Bai, Xinqing Zhao
Production of bioenergy and bio-based chemicals by using fermentable sugars released from low-cost renewable lignocellulosic biomass has received great attention. Efficient cellulolytic enzymes are crucial for lignocellulose bioconversion, but high cellulase production cost is limiting the bioconversion efficiency of cellulosic biomass and industrial applications of lignocellulose biorefinery. Studies on induction and regulation of cellulase in filamentous fungi will help to further develop superior fungal strains for efficient cellulase production and reduce cellulase production cost...
November 25, 2016: Sheng Wu Gong Cheng Xue Bao, Chinese Journal of Biotechnology
Chae Ho Im, Changman Kim, Young Eun Song, Sang-Eun Oh, Byong-Hun Jeon, Jung Rae Kim
Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided...
October 3, 2017: Chemosphere
Renhui Bai, Yunbo Zhang, Chundi Wang, Feiyang Zhang, Zhe Zhang, Fubao Sun, Zhenyu Zhang
Deficient activity of endo-1,4-beta-glucanase II (Cel5A) secreted by Trichoderma reesei is one of the challenges involved in effective cellulase saccharification of cellulosic substrates. Therefore, we expressed Cel5A in Pichia pastoris by constructing a recombinant strain. With the gene optimization based on codon bias, and the construction of expression vector pPIC9K-eg2, the optimized gene was electro-transformed into P. pastoris GS115 to form transformants. Then, a high Cel5A activity producing recombinant, namely P...
October 25, 2016: Sheng Wu Gong Cheng Xue Bao, Chinese Journal of Biotechnology
Manuel Eibinger, Jürgen Sattelkow, Thomas Ganner, Harald Plank, Bernd Nidetzky
LPMO (lytic polysaccharide monooxygenase) represents a unique paradigm of cellulosic biomass degradation by an oxidative mechanism. Understanding the role of LPMO in deconstructing crystalline cellulose is fundamental to the enzyme's biological function and will help to specify the use of LPMO in biorefinery applications. Here we show with real-time atomic force microscopy that C1 and C4 oxidizing types of LPMO from Neurospora crassa (NcLPMO9F, NcLPMO9C) bind to nanocrystalline cellulose with high preference for the very same substrate surfaces that are also used by a processive cellulase (Trichoderma reesei CBH I) to move along during hydrolytic cellulose degradation...
October 12, 2017: Nature Communications
Claire M Hull, Andrew G S Warrilow, Nicola J Rolley, Claire L Price, Iain S Donnison, Diane E Kelly, Steven L Kelly
BACKGROUND: Bioethanol production from sustainable sources of biomass that limit effect on food production are needed and in a biorefinery approach co-products are desirable, obtained from both the plant material and from the microbial biomass. Fungal biotransformation of steroids was among the first industrial biotransformations allowing corticosteroid production. In this work, the potential of yeast to produce intermediates needed in corticosteroid production is demonstrated at laboratory scale following bioethanol production from perennial ryegrass juice...
2017: Biotechnology for Biofuels
Goldy De Bhowmick, Ajit K Sarmah, Ramkrishna Sen
A constant shift of society's dependence from petroleum-based energy resources towards renewable biomass-based has been the key to tackle the greenhouse gas emissions. Effective use of biomass feedstock, particularly lignocellulosic, has gained worldwide attention lately. Lignocellulosic biomass as a potent bioresource, however, cannot be a sustainable alternative if the production cost is too high and/ or the availability is limited. Recycling the lignocellulosic biomass from various sources into value added products such as bio-oil, biochar or other biobased chemicals in a bio-refinery model is a sensible idea...
September 27, 2017: Bioresource Technology
Austin D Comer, Matthew R Long, Jennifer L Reed, Brian F Pfleger
The low cost of natural gas has driven significant interest in using C1 carbon sources (e.g. methane, methanol, CO, syngas) as feedstocks for producing liquid transportation fuels and commodity chemicals. Given the large contribution of sugar and lignocellulosic feedstocks to biorefinery operating costs, natural gas and other C1 sources may provide an economic advantage. To assess the relative costs of these feedstocks, we performed flux balance analysis on genome-scale metabolic models to calculate the maximum theoretical yields of chemical products from methane, methanol, acetate, and glucose...
December 2017: Metabolic Engineering Communications
Jo-Shu Chang, S Venkata Mohan, Duu-Jong Lee
No abstract text is available yet for this article.
November 2017: Bioresource Technology
Michele Michelin, Héctor A Ruiz, Maria de Lourdes T M Polizeli, José A Teixeira
This work presents an integrated and multi-step approach for the recovery and/or application of the lignocellulosic fractions from corncob in the production of high value added compounds as xylo-oligosaccharides, enzymes, fermentable sugars, and lignin in terms of biorefinery concept. For that, liquid hot water followed by enzymatic hydrolysis were used. Liquid hot water was performed using different residence times (10-50min) and holding temperature (180-200°C), corresponding to severities (log(R0)) of 3...
September 20, 2017: Bioresource Technology
Yuanyuan Ren, Miao Yu, Chuanfu Wu, Qunhui Wang, Ming Gao, Qiqi Huang, Yu Liu
Anaerobic digestion has been practically applied in agricultural and industrial waste treatment and recognized as an economical-effective way for food waste disposal. This paper presented an overview on the researches about anaerobic digestion of food waste. Technologies (e.g., pretreatment, co-digestion, inhibition and mitigation, anaerobic digestion systems, etc.) were introduced and evaluated on the basis of bibliometric analysis. Results indicated that ethanol and aerobic prefermentation were novel approaches to enhance substrates hydrolysis and methane yield...
September 20, 2017: Bioresource Technology
Jung-Eun Lee, Praveen V Vadlani, Yadhu N Guragain, Ka-Yiu San, Doo-Hong Min
Switchgrass is a promising feedstock to generate fermentable sugars required for the sustainable operation of biorefineries because of their abundant availability, easy cropping system, and high cellulosic content. The objective of this study was to investigate the potentiality of switchgrass as an alternative sugar supplier for free fatty acid (FFA) production using engineered Escherichia coli strains. Recombinant E. coli strains successfully produced FFAs using switchgrass hydrolysates. A total of about 3 g/L FFAs were attained from switchgrass hydrolysates by engineered E...
September 28, 2017: Biotechnology Progress
Nicolas Brun, Peter Hesemann, Davide Esposito
Biorefinery aims at the conversion of biomass and renewable feedstocks into fuels and platform chemicals, in analogy to conventional oil refinery. In the past years, the scientific community has defined a number of primary building blocks that can be obtained by direct biomass decomposition. However, the large potential of this "renewable chemical space" to contribute to the generation of value added bio-active compounds and materials still remains unexplored. In general, biomass derived building blocks feature a diverse range of chemical functionalities...
July 1, 2017: Chemical Science
Marisa Raita, Naphatsaya Denchokepraguy, Verawat Champreda, Navadol Laosiripojana
Organosolv is an effective pretreatment strategy for increasing digestibility of lignocellulosic materials owing to selectivity of solvents on separating biopolymeric constituents of plant biomass. In the present work, a novel low-temperature alkali-catalyzed organosolv pretreatment of rice straw was studied. The effects of alkaline catalysts (i.e., NaOH, ammonia, and tri-ethylamine) and solvent types (i.e., acetone, ethanol, and water) were carried out. Addition of alkalis led to increasing sugar from enzymatic hydrolysis while acetone was found to be superior to ethanol and water on selectivity towards cellulose preservation...
October 2017: 3 Biotech
Rebecca Gmoser, Jorge A Ferreira, Patrik R Lennartsson, Mohammad J Taherzadeh
Filamentous fungi, including the ascomycetes Monascus, Fusarium, Penicillium and Neurospora, are being explored as novel sources of natural pigments with biological functionality for food, feed and cosmetic applications. Such edible fungi can be used in biorefineries for the production of ethanol, animal feed and pigments from waste sources. The present review gathers insights on fungal pigment production covering biosynthetic pathways and stimulatory factors (oxidative stress, light, pH, nitrogen and carbon sources, temperature, co-factors, surfactants, oxygen, tricarboxylic acid intermediates and morphology) in addition to pigment extraction, analysis and identification methods...
2017: Fungal Biology and Biotechnology
Hendrik Hohagen, Dominik Schwarz, Gerhard Schenk, Luke W Guddat, Doris Schieder, Jörg Carsten, Volker Sieber
An immobilized enzymatic reaction cascade was designed and optimized for the deacidification of grass silage press juice (SPJ), thus facilitating the production of bio-based chemicals. The cascade involves a three-step process using four enzymes immobilized in a Ca-alginate gel and uses lactic acid to form acetoin, a value-added product. The reaction is performed with a continuous, pH-dependent substrate feed under oxygenation. With titrated lactic acid yields of up to 91% and reaction times of ca. 6h was achieved...
September 1, 2017: Bioresource Technology
Wubliker Dessie, Wenming Zhang, Fengxue Xin, Weiliang Dong, Min Zhang, Jiangfeng Ma, Min Jiang
In this study, a novel biorefinery concept of succinic acid (SA) production from fruit and vegetable wastes (FVWs) hydrolyzed by crude enzyme mixtures through solid state fermentation was designed. Enzyme complex solid mashes from various types of FVWs were on-site produced through solid-state fermentation by Aspergillus niger and Rhizopus oryzae. This solid was then added to FVW suspensions and undergo hydrolysis reaction to generate fermentable sugars and other essential nutrients for bacterial growth and product formation...
September 1, 2017: Bioresource Technology
Sai Kishore Butti, S Venkata Mohan
CO2 is a resource yet to be effectively utilized in the autotrophic biotechnology, not only to mitigate and moderate the anthropogenic influence on our climate, but also to steer CO2 sequestration for sustainable development and carbon neutral status. The atmospheric CO2 concentration has seen an exponential increase with the turn of the new millennia causing numerous environmental issues and also in a way feedstock crisis. To progressively regulate the growing CO2 concentrations and to incorporate the integration strategies to our existing CO2 capturing tools, all the influencing factors need to be collectively considered...
October 2, 2017: FEMS Microbiology Letters
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"