Read by QxMD icon Read


Clara Stegehuis, Remco van der Hofstad, A J E M Janssen, Johan S H van Leeuwaarden
Real-world networks often have power-law degrees and scale-free properties, such as ultrasmall distances and ultrafast information spreading. In this paper, we study a third universal property: three-point correlations that suppress the creation of triangles and signal the presence of hierarchy. We quantify this property in terms of c[over ¯](k), the probability that two neighbors of a degree-k node are neighbors themselves. We investigate how the clustering spectrum k↦c[over ¯](k) scales with k in the hidden-variable model and show that c[over ¯](k) follows a universal curve that consists of three k ranges where c[over ¯](k) remains flat, starts declining, and eventually settles on a power-law c[over ¯](k)∼k^{-α} with α depending on the power law of the degree distribution...
October 2017: Physical Review. E
Chanania Steinbock, Ofer Biham, Eytan Katzav
We present analytical results for the distribution of shortest path lengths (DSPL) in a network growth model which evolves by node duplication (ND). The model captures essential properties of the structure and growth dynamics of social networks, acquaintance networks, and scientific citation networks, where duplication mechanisms play a major role. Starting from an initial seed network, at each time step a random node, referred to as a mother node, is selected for duplication. Its daughter node is added to the network, forming a link to the mother node, and with probability p to each one of its neighbors...
September 2017: Physical Review. E
Ning Zhang, Yuanyuan Wang, Ming Jia, Yongchang Liu, Jianzhong Xu, Lifang Jiao, Fangyi Cheng
We here report on the preparation and Li-ion battery anode application of ultrasmall Sn nanoparticles (∼5 nm) uniformly embedded in spherical hollow carbon. The novel Sn-C composite shows a high Li-storage capacity (743 mA h g-1 at 0.5 A g-1) with unprecedentedly high cyclic stability (92.1% capacity retention after 6000 cycles at 4 A g-1).
January 16, 2018: Chemical Communications: Chem Comm
Chaoliang Tan, Zhimin Luo, Apoorva Chaturvedi, Yongqing Cai, Yonghua Du, Yue Gong, Ying Huang, Zhuangchai Lai, Xiao Zhang, Lirong Zheng, Xiaoying Qi, Min Hao Goh, Jie Wang, Shikui Han, Xue-Jun Wu, Lin Gu, Christian Kloc, Hua Zhang
Nanostructured transition metal dichalcogenides (TMDs) are proven to be efficient and robust earth-abundant electrocatalysts to potentially replace precious platinum-based catalysts for the hydrogen evolution reaction (HER). However, the catalytic efficiency of reported TMD catalysts is still limited by their low-density active sites, low conductivity, and/or uncleaned surface. Herein, a general and facile method is reported for high-yield, large-scale production of water-dispersed, ultrasmall-sized, high-percentage 1T-phase, single-layer TMD nanodots with high-density active edge sites and clean surface, including MoS2 , WS2 , MoSe2 , Mo0...
January 15, 2018: Advanced Materials
Yumin Wu, Haobo Cheng, Yongfu Wen
To accurately measure ultrasmall rotation angles, a robust and effective method based on lensless digital holographic microscopy is proposed in this paper. The method combines holographic microscopy, solid geometry, and 3D measurement, including holographic measurement and angle measurement processes. We can calculate the 3D shape by the angular spectrum algorithm and the least-squares phase-unwrapping algorithm in the holographic process. According to the relationship between the surface shape and rotation angles, the real-time rotation angles can be calculated...
January 1, 2018: Applied Optics
Jian Qin, Tianshuai Wang, Dongye Liu, Enzuo Liu, Naiqin Zhao, Chunsheng Shi, Fang He, Liying Ma, Chunnian He
Engineering of 3D graphene/metal composites with ultrasmall sized metal and robust metal-graphene interfacial interaction for energy storage application is still a challenge and rarely reported. In this work, a facile top-down strategy is developed for the preparation of SnSb-in-plane nanoconfined 3D N-doped porous graphene networks for sodium ion battery anodes, which are composed of several tens of interconnected empty N-graphene boxes in-plane firmly embedded with ultrasmall SnSb nanocrystals. The all-around encapsulation (plane-to-plane contact) architecture that provides a large interface between N-graphene and SnSb nanocrystal not only effectively enhances the electron conductivity and structural integrity of the overall electrode, but also offers excess interfacial sodium storage, thus leading to much enhanced high-rate sodium storage capacity and stability, which has been proven by both experimental results and first-principles simulations...
January 11, 2018: Advanced Materials
Antonida V Makhotenko, Ekaterina A Snigir, Natalia O Kalinina, Valentin V Makarov, Michael E Taliansky
Nanoparticles (NPs) have a number of unique properties associated with their ultrasmall size and exhibit many advantages compared with existing plant biotechnology platforms for delivery of proteins, RNA and DNA of various sizes into the plant cells (Arruda et al., 2015; Silva et al., 2010; Martin-Ortigosa et al., 2014; Mitter et al., 2017) [1], [2], [3], [4]. The data presented in this article demonstrate a delivery of biomolecules into Nicotiana benthamiana plant leaves using various types of NPs including gold, iron oxide and chitosan NPs and methods of biolistic bombardment and infiltration...
February 2018: Data in Brief
Teng Liu, Fulin Yang, Gongzhen Cheng, Wei Luo
Searching for highly efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) using nonnoble metal-based catalysts is essential for the development of many energy conversion systems, including rechargeable fuel cells and metal-air batteries. Here, Co9-x Fex S8 /Co,Fe-N-C hybrids wrapped by reduced graphene oxide (rGO) (abbreviated as S-Co9-x Fex S8 @rGO) are synthesized through a semivulcanization and calcination method using graphene oxide (GO) wrapped bimetallic zeolite imidazolate framework (ZIF) Co,Fe-ZIF (CoFe-ZIF@GO) as precursors...
January 10, 2018: Small
Longfei Tan, Jing Wan, Weisheng Guo, Caizhang Ou, Tianlong Liu, Changhui Fu, Qiang Zhang, Xiangling Ren, Xing-Jie Liang, Jun Ren, Laifeng Li, Xianwei Meng
Ultrasmall Cu2ZnSnS4 (CZTS) nanocrystals with high near infrared (NIR) photothermal conversion abilities and peroxidase-mimic properties are synthesized and functionalized with bovine serum albumin (BSA) for rapid clearance multifunctional theranostic platform. Due to the presence of Cu (I) of CZTS@BSA, H2O2 could be decomposed to produce highly reactive oxygen species (ROS), catalyzed by intrinsic peroxidase like activity of CZTS. The CZTS@BSA possesses high NIR absorption and excellent photoacoustic (PA) imaging abilities...
January 2, 2018: Biomaterials
Ben Liu, Lei Jin, Wei Zhong, Aaron Lopes, Steven L Suib, Jie He
We report the use of phosphorus-doped carbon (P-C) as support to grow ultrasmall (1-3 nm) and ligand-free precious metal nanocrystals (PMNCs) via chemical reduction. We show that the valence states of surface phosphorus species are critical in tuning the affinity between the carbon support and metal precursors, which rationally controls the loading size and uniformity of resultant PMNCs. Five kinds of PMNCs, including Ru, Ag, Au, Rh, and Pd, were grown in situ to demonstrate the key role of surface phosphorus sites on the P-C support...
January 8, 2018: Chemistry: a European Journal
Kun Liu, Liang Dong, Yunjun Xu, Xu Yan, Fei Li, Yang Lu, Wei Tao, Huangyong Peng, Yadong Wu, Yang Su, Daishun Ling, Tao He, Haisheng Qian, Shu-Hong Yu
There is a great demand to develop high-relaxivity nanoscale contrast agents for magnetic resonance (MR) angiography with high resolution. However, there should be more focus on stability, ion leakage and excretion pathway of the intravenously injected nanoparticles, which are closely related to their clinic potentials. Herein, uniform ultrasmall-sized NaGdF4 nanocrystal (sub-10 nm) was synthesized using a facile high temperature organic solution method, and the nanocrystals were modified by a ligand-exchange approach using PEG-PAA di-block copolymer...
December 28, 2017: Biomaterials
Xi Hu, Jihong Sun, Fangyuan Li, Ruiqing Li, Jiahe Wu, Jie He, Nan Wang, Jianan Liu, Shuaifei Wang, Fei Zhou, Xiaolian Sun, Dokyoon Kim, Taeghwan Hyeon, Daishun Ling
Although metallic nanomaterials with high X-ray attenuation coefficients have been wide-ly used as X-ray computed tomography (CT) contrast agents, their intrinsically poor bio-degradability requires them to be cleared from the body to avoid any potential toxicity. On the other hand, extremely small-sized nanomaterials with outstanding renal clearance properties are not much effective for tumor targeting because of their too rapid clearance in vivo. To overcome this dilemma, here we report on the hollow bismuth subcarbonate nanotubes (BNTs) assembled from renal-clearable ultrasmall bismuth subcarbonate nanoclusters for tumor-targeted imaging and chemoradiotherapy...
January 3, 2018: Nano Letters
Bhavesh D Kevadiya, Christopher Woldstad, Brendan M Ottemann, Prasanta Dash, Balasrinivasa R Sajja, Benjamin Lamberty, Brenda Morsey, Ted Kocher, Rinku Dutta, Aditya N Bade, Yutong Liu, Shannon E Callen, Howard S Fox, Siddappa N Byrareddy, JoEllyn M McMillan, Tatiana K Bronich, Benson J Edagwa, Michael D Boska, Howard E Gendelman
RATIONALE: Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, "multimodal imaging theranostic nanoprobes" were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. METHODS: Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability...
2018: Theranostics
Yoshiyuki Hirano, Cecil C Yen, Junjie V Liu, Julie B Mackel, Hellmut Merkle, George C Nascimento, Bojana Stefanovic, Afonso C Silva
Understanding the spatiotemporal features of the hemodynamic response function (HRF) to brain stimulation is essential for the correct application of neuroimaging methods to study brain function. Here, we investigated the spatiotemporal evolution of the blood oxygen level-dependent (BOLD) and cerebral blood volume (CBV) HRF in conscious, awake marmosets (Callithrix jacchus), a New World non-human primate with a lissencephalic brain and with growing use in biomedical research. The marmosets were acclimatized to head fixation and placed in a 7-T magnetic resonance imaging (MRI) scanner...
December 29, 2017: NMR in Biomedicine
Christophe Boss, Nicolas Bouche, Umberto De Marchi
Managing increasingly prevalent chronic diseases will require close continuous monitoring of patients. Cell-based biosensors may be used for implantable diagnostic systems to monitor health status. Cells are indeed natural sensors in the body. Functional cellular systems can be maintained in the body for long-term implantation using cell encapsulation technology. By taking advantage of recent progress in miniaturized optoelectronic systems, the genetic engineering of optically responsive cells may be combined with cell encapsulation to generate smart implantable cell-based sensing systems...
December 28, 2017: Advanced Healthcare Materials
Xiaofen Yu, Qibai Wu, Haiyan Zhang, Guoxun Zeng, Wenwu Li, Yannan Qian, Yang Li, Guoqiang Yang, Muyu Chen
With the rapid development of industry, heat removal and management is a major concern for any technology. Heat transfer plays a critically important role in many sectors of engineering; nowadays utilizing nanofluids is one of the relatively optimized techniques to enhance heat transfer. In the present work, a facile low-temperature solvothermal method was employed to fabricate the SnO₂/reduced graphene oxide (rGO) nanocomposite. X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscope (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) have been performed to characterize the SnO₂/rGO nanocomposite...
December 27, 2017: Materials
Zhijun Yan, Xiaobin Jiang, Yan Dai, Wu Xiao, Xiangcun Li, Naixu Du, Gaohong He
In this paper, double carbon shell hollow spheres which provide macropores (mC) for ultrasmall Fe3O4 nanoparticle (10-20nm) encapsulation individually were first prepared (Fe3O4@mC). The well-constructed Fe3O4@mC electrode materials offer the feasibility to study volume change, aggregation and pulverization process of the active Fe3O4 nanoparticles for Li-ion storage in a confined space. Fe3O4@mC exhibits excellent electrochemical performances, and delivers a high capacity of 645 mA h g-1 at 2 A g-1 after 1000 cycles...
December 27, 2017: ACS Applied Materials & Interfaces
Ying Wang, Degao Wang, Christopher J Dares, Seth L Marquard, Matthew V Sheridan, Thomas J Meyer
Monodispersed mixtures of 6-nm Cu and Ag nanoparticles were prepared by electrochemical reduction on electrochemically polymerized poly-Fe(vbpy)3(PF6)2 film electrodes on glassy carbon. Conversion of the complex to poly-Fe(vbpy)2(CN)2 followed by surface binding of salts of the cations and electrochemical reduction gave a mixture of chemically distinct clusters on the surface, (Cu) m ,(Ag) n |polymer|glassy carbon electrode (GCE), as shown by X-ray photoelectron spectroscopy (XPS) measurements. A (Cu)2,(Ag)3|(80-monolayer-poly-Fe(vbpy)32+|GCE electrode at -1...
December 26, 2017: Proceedings of the National Academy of Sciences of the United States of America
Qing-Lan Li, Duo Wang, Yuanzheng Cui, Zhiying Fan, Li Ren, Dongdong Li, Jihong Yu
A novel multifunctional drug delivery system has been constructed by assembling per-6-thio-β-cyclodextrin-modified ultrasmall CuS nanoparticles (CD-CuS) onto fluorescent AIEgen-containing mesoporous silica nanoparticles (FMSN). The CD-CuS nanoparticles are anchored on the surface of benzimidazole-grafted FMSN, acting as a gatekeeper and photothermal agent. The prepared blue-emitting nanocomposite (FMSN@CuS) exhibits good biocompatibility and cell imaging capability. Anticancer drug doxorubicin hydrochloride (DOX) molecules are loaded into FMSN@CuS, and zero prerelease at physiological pH (7...
December 20, 2017: ACS Applied Materials & Interfaces
Xin Shi, Daniel Verschueren, Sergii Pud, Cees Dekker
Plasmonic nanopores combine the advantages of nanopore sensing and surface plasmon resonances by introducing confined electromagnetic fields to a solid-state nanopore. Ultrasmall nanogaps between metallic nanoantennas can generate the extremely enhanced localized electromagnetic fields necessary for single-molecule optical sensing and manipulation. Challenges in fabrication, however, hamper the integration of such nanogaps into nanopores. Here, a top-down approach for integrating a plasmonic antenna with an ultrasmall nanogap into a solid-state nanopore is reported...
December 18, 2017: Small
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"