Read by QxMD icon Read


Abdulraheem Alshareef, Hai-Feng Zhang, Yung-Hsing Huang, Chengsheng Wu, Jing Dong Zhang, Peng Wang, Ahmed El-Sehemy, Mohamed Fares, Raymond Lai
Various forms of oncogenic ALK proteins have been identified in various types of human cancers. While Crizotinib, an ALK inhibitor, has been found to be therapeutically useful against a subset of ALK(+) tumours, clinical resistance to this drug has been well recognized and the mechanism of this phenomenon is incompletely understood. Using the cellular thermal shift assay (CETSA), we measured the Crizotinib-ALK binding in a panel of ALK(+) cell lines, and correlated the findings with the ALK structure and its interactions with specific binding proteins...
2016: Scientific Reports
Brinton Seashore-Ludlow, Thomas Lundbäck
The cellular thermal shift assay (CETSA) was introduced in 2013 as a means to assess drug binding in complex environments such as cell lysates, live cells, and even tissues. The assay principle relies on the well-proven biophysical concept of ligand-induced thermal stabilization of proteins, which in CETSA applications is measured as a persistent presence of soluble protein at elevated temperatures. Given its recent development, we have just started to learn about the benefits and pitfalls of the method as it is applied to a growing number of protein target classes, the majority of which are intracellular soluble proteins...
July 11, 2016: Journal of Biomolecular Screening
Ana Zovko, Metka Novak, Petra Hååg, Dimitry Kovalerchick, Teresa Holmlund, Katarina Färnegårdh, Micha Ilan, Shmuel Carmeli, Rolf Lewensohn, Kristina Viktorsson
In this work two acetylene alcohols, compound 1 and compound 2, which were isolated and identified from the sponge Cribrochalina vasculum, and which showed anti-tumor effects were further studied with respect to targets and action mechanisms. Gene expression analyses suggested insulin like growth factor receptor (IGF-1R) signaling to be instrumental in controlling anti-tumor efficacy of these compounds in non-small cell lung cancer (NSCLC). Indeed compounds 1 and 2 inhibited phosphorylation of IGF-1Rβ as well as reduced its target signaling molecules IRS-1 and PDK1 allowing inhibition of pro-survival signaling...
July 1, 2016: Oncotarget
Chuanpeng Liang, Huilin Hao, Xingkang Wu, Zhenyu Li, Jing Zhu, Chunhua Lu, Yuemao Shen
Heat shock protein 90 (Hsp90) is an attractive chemotherapeutic target for antitumor drug development. Herein, we reported the design and synthesis of two series of novel N-(5-chloro-2,4-dihydroxybenzoyl)-1,2,3,4-tetrahydroisoquinoline-3- carboxamides as Hsp90 inhibitors using (S)-Tic (1,2,3,4-tetrahydroisoquinoline-3- carboxylic acid) (A1-13) and (R)-Tic (B1-13) as scaffold, respectively. Cellular thermal shift assay (CETSA) screening showed that compounds B1-13 with (R)-Tic scaffold exhibited potent ability to stabilize Hsp90α...
October 4, 2016: European Journal of Medicinal Chemistry
Hua Xu, Ariamala Gopalsamy, Erik C Hett, Shores Salter, Ann Aulabaugh, Robert E Kyne, Betsy Pierce, Lyn H Jones
Proof of drug-target engagement in physiologically-relevant contexts is a key pillar of successful therapeutic target validation. We developed two orthogonal technologies, the cellular thermal shift assay (CETSA) and a covalent chemical probe reporter approach (harnessing sulfonyl fluoride tyrosine labeling and subsequent click chemistry) to measure the occupancy of the mRNA-decapping scavenger enzyme DcpS by a small molecule inhibitor in live cells. Enzyme affinity determined using isothermal dose response fingerprinting (ITDRFCETSA) and the concentration required to occupy 50% of the enzyme (OC50) using the chemical probe reporter assay were very similar...
July 14, 2016: Organic & Biomolecular Chemistry
Biwei Zhu, Hailong Zhang, Sijun Pan, Chenyu Wang, Jingyan Ge, Jun-Seok Lee, Shao Q Yao
DOT1L is the sole protein methyltransferase that methylates histone H3 on lysine 79 (H3K79), and is a promising drug target against cancers. Small-molecule inhibitors of DOT1L such as FED1 are potential anti-cancer agents and useful tools to investigate the biological roles of DOT1L in human diseases. FED1 showed excellent in vitro inhibitory activity against DOT1L, but its cellular effect was relatively poor. In this study, we designed and synthesized photo-reactive and "clickable" affinity-based probes (AfBPs), P1 and P2, which were cell-permeable and structural mimics of FED1...
June 1, 2016: Chemistry: a European Journal
Helena Almqvist, Hanna Axelsson, Rozbeh Jafari, Chen Dan, André Mateus, Martin Haraldsson, Andreas Larsson, Daniel Martinez Molina, Per Artursson, Thomas Lundbäck, Pär Nordlund
Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine...
2016: Nature Communications
J Chang, Y Kim, H J Kwon
Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product...
May 4, 2016: Natural Product Reports
Daniel Martinez Molina, Pär Nordlund
A drug must engage its intended target to achieve its therapeutic effect. However, conclusively measuring target engagement (TE) in situ is challenging. This complicates preclinical development and is considered a key factor in the high rate of attrition in clinical trials. Here, we discuss a recently developed, label-free, biophysical assay, the cellular thermal shift assay (CETSA), which facilitates the direct assessment of TE in cells and tissues at various stages of drug development. CETSA also reveals biochemical events downstream of drug binding and therefore provides a promising means of establishing mechanistic biomarkers...
2016: Annual Review of Pharmacology and Toxicology
Ban Xiong Tan, Christopher J Brown, Fernando J Ferrer, Tsz Ying Yuen, Soo Tng Quah, Boon Hong Chan, Anna E Jansson, Hsiang Ling Teo, Pär Nordlund, David P Lane
Previous publications on stapled peptide inhibitors against Mdm2/Mdm4-p53 interactions have established that this new class of drugs have the potential to be easily optimised to attain high binding affinity and specificity, but the mechanisms controlling their cellular uptake and target engagement remain elusive and controversial. To aid in understanding the rules of peptide and staple design, and to enable rapid optimisation, we employed the newly-developed cellular thermal shift assay (CETSA). CETSA was able to validate stapled peptide binding to Mdm2 and Mdm4, and the method was also used to determine the extent of cellular uptake, cellular availability, and intracellular binding of the endogenous target proteins in its native environment...
2015: Scientific Reports
Annika Jenmalm Jensen, Daniel Martinez Molina, Thomas Lundbäck
No abstract text is available yet for this article.
2015: Future Medicinal Chemistry
Rozbeh Jafari, Helena Almqvist, Hanna Axelsson, Marina Ignatushchenko, Thomas Lundbäck, Pär Nordlund, Daniel Martinez Molina
Thermal shift assays are used to study thermal stabilization of proteins upon ligand binding. Such assays have been used extensively on purified proteins in the drug discovery industry and in academia to detect interactions. Recently, we published a proof-of-principle study describing the implementation of thermal shift assays in a cellular format, which we call the cellular thermal shift assay (CETSA). The method allows studies of target engagement of drug candidates in a cellular context, herein exemplified with experimental data on the human kinases p38α and ERK1/2...
September 2014: Nature Protocols
Daniel Martinez Molina, Rozbeh Jafari, Marina Ignatushchenko, Takahiro Seki, E Andreas Larsson, Chen Dan, Lekshmy Sreekumar, Yihai Cao, Pär Nordlund
The efficacy of therapeutics is dependent on a drug binding to its cognate target. Optimization of target engagement by drugs in cells is often challenging, because drug binding cannot be monitored inside cells. We have developed a method for evaluating drug binding to target proteins in cells and tissue samples. This cellular thermal shift assay (CETSA) is based on the biophysical principle of ligand-induced thermal stabilization of target proteins. Using this assay, we validated drug binding for a set of important clinical targets and monitored processes of drug transport and activation, off-target effects and drug resistance in cancer cell lines, as well as drug distribution in tissues...
July 5, 2013: Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"