Read by QxMD icon Read


Zhi-Min Zhang, Rui Lu, Pengcheng Wang, Yang Yu, Dongliang Chen, Linfeng Gao, Shuo Liu, Debin Ji, Scott B Rothbart, Yinsheng Wang, Gang Greg Wang, Jikui Song
DNA methylation by de novo DNA methyltransferases 3A (DNMT3A) and 3B (DNMT3B) at cytosines is essential for genome regulation and development. Dysregulation of this process is implicated in various diseases, notably cancer. However, the mechanisms underlying DNMT3 substrate recognition and enzymatic specificity remain elusive. Here we report a 2.65-ångström crystal structure of the DNMT3A-DNMT3L-DNA complex in which two DNMT3A monomers simultaneously attack two cytosine-phosphate-guanine (CpG) dinucleotides, with the target sites separated by 14 base pairs within the same DNA duplex...
February 7, 2018: Nature
Beibei Li, Li Hou, Dan Zhu, Xilian Xu, Shiheng An, Xianhui Wang
DNA methylation has been proposed to play critical roles in caste fate and behavioral plasticity in bumblebees, however, there is little information on its regulatory mechanisms. Here, we identified six important genes mediating the modification of DNA methylation and determined their expression patterns in the bumblebee Bombus terrestris. There is a complete functional DNA methylation system, including four DNA methyltransferases (DNMT1a, DNMT1b, DNMT2, and DNMT3), a DNA demethylase (Ten-eleven translocation), and a methyl-CpG-binding domain protein in B...
February 5, 2018: Scientific Reports
Carlos A M Cardoso-Júnior, Karina R Guidugli-Lazzarini, Klaus Hartfelder
The canonic regulatory module for lifespan of honey bee (Apis mellifera) workers involves a mutual repressor relationship between juvenile hormone (JH) and vitellogenin (Vg). Compared to vertebrates, however, little is known about a possible role of epigenetic factors. The full genomic repertoire of DNA methyltransferases (DNMTs) makes the honey bee an attractive emergent model for studying the role of epigenetics in the aging process of invertebrates, and especially so in social insects. We first quantified the transcript levels of the four DNMTs encoding genes in the head thorax and abdomens of workers of different age, showing that dnmt1a and dnmt3 expression is up-regulated in abdomens of old workers, whereas dnmt1b and dnmt2 are down-regulated in heads of old workers...
January 2018: Insect Biochemistry and Molecular Biology
T-M Dai, Z-C Lü, Y-S Wang, W-X Liu, X-Y Hong, F-H Wan
The Bemisia tabaci Mediterranean (MED) cryptic species is an invasive pest, distributed worldwide, with high ecological adaptability and thermotolerance. DNA methylation (a reversible chromatin modification) is one possible change that may occur within an organism subjected to environmental stress. To assess the effects of temperature stress on DNA methyltransferase 3 (Dnmt3) in MED, we cloned and sequenced BtDnmt3 and identified its functions in response to high and low temperatures. The full-length cDNA of BtDnmt3 was 3913 bp, with an open reading frame of 1962 bp, encoding a 73...
February 2018: Insect Molecular Biology
Karl M Glastad, Samuel V Arsenault, Kim L Vertacnik, Scott M Geib, Sasha Kay, Bryan N Danforth, Sandra M Rehan, Catherine R Linnen, Sarah D Kocher, Brendan G Hunt
Changes in gene regulation that underlie phenotypic evolution can be encoded directly in the DNA sequence or mediated by chromatin modifications such as DNA methylation. It has been hypothesized that the evolution of eusocial division of labor is associated with enhanced gene regulatory potential, which may include expansions in DNA methylation in the genomes of Hymenoptera (bees, ants, wasps, and sawflies). Recently, this hypothesis garnered support from analyses of a commonly used metric to estimate DNA methylation in silico, CpG content...
June 1, 2017: Genome Biology and Evolution
Devanshi Jain, Cem Meydan, Julian Lange, Corentin Claeys Bouuaert, Nathalie Lailler, Christopher E Mason, Kathryn V Anderson, Scott Keeney
Transcriptional silencing by heritable cytosine-5 methylation is an ancient strategy to repress transposable elements. It was previously thought that mammals possess four DNA methyltransferase paralogs-Dnmt1, Dnmt3a, Dnmt3b and Dnmt3l-that establish and maintain cytosine-5 methylation. Here we identify a fifth paralog, Dnmt3c, that is essential for retrotransposon methylation and repression in the mouse male germline. From a phenotype-based forward genetics screen, we isolated a mutant mouse called 'rahu', which displays severe defects in double-strand-break repair and homologous chromosome synapsis during male meiosis, resulting in sterility...
August 2017: PLoS Genetics
Joana Firmino, Carlos Carballo, Paula Armesto, Marco A Campinho, Deborah M Power, Manuel Manchado
BACKGROUND: The identification of DNA methyltransferases (Dnmt) expression patterns during development and their regulation is important to understand the epigenetic mechanisms that modulate larval plasticity in marine fish. In this study, dnmt1 and dnmt3 paralogs were identified in the flatfish Solea senegalensis and expression patterns in early developmental stages and juveniles were determined. Additionally, the regulation of Dnmt transcription by a specific inhibitor (5-aza-2'-deoxycytidine) and temperature was evaluated...
July 17, 2017: BMC Developmental Biology
Chien-Wei Lee, Wei-Chih Huang, Hsien-Da Huang, Yi-Hsiang Huang, Jennifer H Ho, Muh-Hwa Yang, Vincent W Yang, Oscar K Lee
The irreversibility of developmental processes in mammalian cells has been challenged by rising evidence that de-differentiation of hepatocytes occurs in adult liver. However, whether reversibility exists in mesenchymal stromal cell (MSC)-derived hepatocytes (dHeps) remains elusive. In this study, we find that hepatogenic differentiation (HD) of MSCs is a reversible process and is modulated by DNA methyltransferases (DNMTs). DNMTs are regulated by transforming growth factor β1 (TGFβ1), which in turn controls hepatogenic differentiation and de-differentiation...
July 11, 2017: Stem Cell Reports
Davood Sabour, Sureshkumar Perumal Srinivasan, Susan Rohani, Vilas Wagh, John Antonydas Gaspar, Darius Panek, Mostafa Abootorabi Ardestani, Michael Xavier Doss, Nicole Riet, Hinrich Abken, Jürgen Hescheler, Symeon Papadopoulos, Agapios Sachinidis
The role of striatin interacting protein 2 (Strip2) in differentiation of embryonic stem cells (ESCs) is still under debate. Strip2-silenced murine (KD) ESCs were differentiated for 4, 8, 12, and 16 days. We show that Strip2 is distributed in the perinucleus or nuclei of wild-type (WT) undifferentiated ESCs, but is localized in high-density nuclear bodies in differentiated cells. CellNet analysis of microarray gene expression data for the KD and scrambled control (SCR) embryoid bodies (EBs), as well as immunostainings of key pluripotent factors, demonstrated that differentiation of KD ESCs is repressed...
June 16, 2017: Molecular Therapy. Methods & Clinical Development
Ye-Ji Sim, Min-Seong Kim, Abeer Nayfeh, Ye-Jin Yun, Su-Jin Kim, Kyung-Tae Park, Chang-Hoon Kim, Kye-Seong Kim
Mouse embryonic stem cells (ESCs) are maintained in serum with leukemia inhibitory factor (LIF) to maintain self-renewal and pluripotency. Recently, a 2i culture method was reported using a combination of MEK inhibition (MEKi) and GSK3 inhibition (GSK3i) with LIF to maintain ESCs in a naive ground state. How 2i maintains a ground state of ESCs remains elusive. Here we show that MEKi and GSK3i maintain the ESC ground state by downregulating global DNA methylation through two distinct mechanisms. MEK1 phosphorylates JMJD2C for ubiquitin-mediated protein degradation...
May 9, 2017: Stem Cell Reports
Sarah Moyon, Dan Ma, Jimmy L Huynh, David J C Coutts, Chao Zhao, Patrizia Casaccia, Robin J M Franklin
Oligodendrocyte progenitor cells (OPCs) are the principal source of new myelin in the central nervous system. A better understanding of how they mature into myelin-forming cells is of high relevance for remyelination. It has recently been demonstrated that during developmental myelination, the DNA methyltransferase 1 (DNMT1), but not DNMT3A, is critical for regulating proliferation and differentiation of OPCs into myelinating oligodendrocytes (OLs). However, it remains to be determined whether DNA methylation is also critical for the differentiation of adult OPCs during remyelination...
March 2017: ENeuro
Yize Zhang, Xin Sun, Lihong Zhang, Weimin Zhang
In vertebrates, DNA methyltransferase 3 (Dnmt3) homologues are responsible for de novo DNA methylation and play important roles in germ cell development. In the present study, four dnmt3 genes, dnmt3aa, dnmt3ab, dnmt3ba and dnmt3bb.1, were identified in ricefield eels. Real-time quantitative PCR analysis showed that all four dnmt3 mRNAs were detected broadly in tissues examined, with testicular expression at relatively high levels. In the testis, immunostaining for all four Dnmt3 forms was mainly localized to spermatocytes, which also contained highly methylated DNA...
February 22, 2017: Scientific Reports
F Mattern, J Heinzmann, D Herrmann, A Lucas-Hahn, T Haaf, H Niemann
Epigenetic changes, such as DNA methylation, play an essential role in the acquisition of full developmental competence by mammalian oocytes during the late follicular growth phase. Here we used the bovine model to investigate the DNA methylation profiles of seven candidate genes (imprinted: bH19, bSNRPN; non-imprinted: bZAR1, bDNMT3A, bOCT4, bDNMT3 Lo and bDNMT3 Ls) and the mRNA expression of nine candidate genes (imprinted: bSNRPN, bPEG3, bIGF2R; non-imprinted: bPRDX1, bDNMT1B, bDNMT3A, bZAR1, bHSF1 and bNLRP9) in oocytes from antral follicles of three different size classes (≤2mm, 3-5mm, ≥6mm) to unravel the epigenetic contribution to this process...
February 3, 2017: Reproduction, Fertility, and Development
Ling-Ling Zhai, Jiao Zhou, Jing Zhang, Xi Tang, Ling-Yu Zhou, Jia-Yu Yin, Minse-Evola Deniz Vanessa, Wen Peng, Jiang Lin, Zhao-Qun Deng
OBJECTIVES: This study was intended to investigate the expression status of Vimentin 2p (VIM 2p), a pseudogene of Vimentin, and further analyze its clinical significance in AML patients. METHODS: Real-time quantitative PCR (RQ-PCR) was employed to explore the expression status of VIM 2p in 128 patients with de novo AML and 36 healthy controls. RESULTS: The expression level of VIM 2p was significantly decreased compared with healthy controls (P< 0...
2017: Cancer Biomarkers: Section A of Disease Markers
Oscar F Sanchez, Jinyoung Lee, Nathaphon Yu King Hing, Seong-Eun Kim, Jennifer L Freeman, Chongli Yuan
Low-dose exposure to lead (Pb) is connected to developmental neurological alterations by inducing molecular changes, such as aberrant gene expression patterns. The attributing molecular mechanism, however, is not well-elucidated. In this study, we revealed epigenetic features and mechanisms that can alter gene expression patterns by identifying changes in DNA methyltransferase (DNMT) activity, expression pattern and DNA methylation level using moelcular studies and a zebrafish animal model. We characterized the effects of Pb on the activities of various DNMTs in vitro and determined the molecular role of Pb in modulating DNMT activity via kinetic experiments...
February 22, 2017: Metallomics: Integrated Biometal Science
Renata Z Jurkowska, Albert Jeltsch
DNA methylation is currently one of the hottest topics in basic and biomedical research. Despite tremendous progress in understanding the structures and biochemical properties of the mammalian DNA nucleotide methyltransferases (DNMTs), principles of their regulation in cells have only begun to be uncovered. In mammals, DNA methylation is introduced by the DNMT1, DNMT3A, and DNMT3B enzymes, which are all large multi-domain proteins. These enzymes contain a catalytic C-terminal domain with a characteristic cytosine-C5 methyltransferase fold and an N-terminal part with different domains that interacts with other proteins and chromatin and is involved in targeting and regulation of the DNMTs...
2016: Advances in Experimental Medicine and Biology
Shoji Tajima, Isao Suetake, Kohei Takeshita, Atsushi Nakagawa, Hironobu Kimura
In mammals, three DNA methyltransferases, Dnmt1, Dnmt3a, and Dnmt3b, have been identified. Dnmt3a and Dnmt3b are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. Dnmt3-like (Dnmt3l), which is a member of the Dnmt3 family but does not possess DNA methylation activity, was reported to be indispensable for global methylation in germ cells. Once the DNA methylation patterns are established, maintenance-type DNA methyltransferase Dnmt1 faithfully propagates them to the next generation via replication...
2016: Advances in Experimental Medicine and Biology
Sasha Kay, Daniel Skowronski, Brendan G Hunt
DNA methylation is accomplished in animals by two classes of enzymes known as DNA methyltransferases, DNMT3 and DNMT1, which perform de novo methylation and maintenance methylation, respectively. Several studies of hymenopteran eusocial insects suggest that DNA methylation is capable of influencing developmental plasticity. However, fundamental questions remain about the patterning of DNA methylation during the course of insect development. In this study, we performed quantitative real-time PCR (qPCR) on transcripts from the single-copy orthologs of DNMT1 and DNMT3 in the red imported fire ant, Solenopsis invicta...
October 24, 2016: Insect Science
Wei Lu, Tanmin Lu, Xin Wei
In the present study, DNA (cytosine-5)-methyltransferase 3α (DNMT3a) is explored as an anticancer molecule in ovarian cancer treatment, and also the mechanistic link between DNMT3a and its regulatory signaling pathway in Caov-3 cells is provided. Firstly, DNMT3a protein expression in 12 freshly resected ovarian cancer patient tissues and tisssues from 8 ovariectomized patients was assessed. In the ovarian cancer tissues, DNMT3a expression was upregulated and miR-182 expression was downregulated. DNMT3a overexpression inhibited miR-182 expression and caspase-3 and -9 activity and suppressed p53 and c-Myc protein expression in Caov-3 cells...
December 2016: Oncology Reports
Jennifer Dorts, Elodie Falisse, Emilie Schoofs, Enora Flamion, Patrick Kestemont, Frédéric Silvestre
DNA methylation, a well-studied epigenetic mark, is important for gene regulation in adulthood and for development. Using genetic and epigenetic approaches, the present study aimed at evaluating the effects of heat stress and copper exposure during zebrafish early embryogenesis when patterns of DNA methylation are being established, a process called reprogramming. Embryos were exposed to 325 μg Cu/L from fertilization (<1 h post fertilization - hpf) to 4 hpf at either 26.5 °C or 34 °C, followed by incubation in clean water at 26...
October 12, 2016: Scientific Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"