Read by QxMD icon Read


Glenn A Doyle, Wade H Berrettini
No abstract text is available yet for this article.
December 2017: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology
Glenn A Doyle, Richard C Crist, Emre T Karatas, Matthew J Hammond, Adam D Ewing, Thomas N Ferraro, Chang-Gyu Hahn, Wade H Berrettini
Whereas some rare genetic variants convey high risk for schizophrenia (SZ), common alleles conveying even moderate risk remain elusive. Long interspersed element-1s (L1) are mobile retrotransposons comprising ~17% of the human genome. L1 retrotransposition can cause somatic mosaicism during neurodevelopment by insertional mutagenesis. We hypothesized that, compared to controls, patients diagnosed with schizophrenia (PDS) may have increased numbers of deleterious L1 insertions, perhaps occurring de novo, in brain-expressed genes of dorsolateral prefrontal cortex (DLPFC) neurons...
December 2017: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology
Nancy Choucair, Mariam Rajab, André Mégarbané, Eliane Chouery
A male child, born from consanguineous parents and having intellectual disability, short stature, dysmorphic facial features, synpolydactyly, and cardiac malformations is reported. Chromosomal microarray analysis showed that the patient presents with an 8p23.1 homozygous deletion, containing the microRNA miR-4660, the exoribonuclease 1 (ERI1), and malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) genes. The microRNA miR-4660 has no known function. MFHAS1 is an immunomodulatory protein involved in Toll-like receptor signaling, erythropoiesis, and cancer...
May 9, 2017: American Journal of Medical Genetics. Part A
Molly F Thomas, Noelle D L'Etoile, K Mark Ansel
Eri1 is an evolutionarily conserved 3'-5' exoribonuclease that participates in 5.8S rRNA 3' end processing and turnover of replication-dependent histone mRNAs. Over the course of evolution, Eri1 has also been recruited into a variety of conserved and species-specific regulatory small RNA pathways that include endogenous small interfering (si)RNAs and miRNAs. Recent advances in Eri1 biology illustrate the importance of RNA metabolism in epigenetic gene regulation and illuminate common principles and players in RNA biogenesis and turnover...
July 2014: Trends in Genetics: TIG
Szilárd Kun, Esztella Mikolás, Gergo A Molnár, Eszter Sélley, Boglárka Laczy, Botond Csiky, Tibor Kovács, István Wittmann
Objectives Patients with end-stage renal failure (ESRF) treated with erythropoiesis-stimulating agents (ESAs) are often ESA-hyporesponsive associated with free radical production. Hydroxyl free radical converts phenylalanine into ortho-tyrosine, while physiological isomer para-tyrosine is formed enzymatically, mainly in the kidney. Production of 'para-tyrosine' is decreased in ESRF and it can be replaced by ortho-tyrosine in proteins. Our aim was to study the role of tyrosines in ESA-responsiveness. Methods Four groups of volunteers were involved in our cross-sectional study: healthy volunteers (CONTR; n = 16), patients on hemodialysis without ESA-treatment (non-ESA-HD; n = 8), hemodialyzed patients with ESA-treatment (ESA-HD; n = 40), and patients on continuous peritoneal dialysis (CAPD; n = 21)...
September 2014: Redox Report: Communications in Free Radical Research
Kai P Hoefig, Vigo Heissmeyer
During the cell cycle the expression of replication-dependent histones is tightly coupled to DNA synthesis. Histone messenger RNA (mRNA) levels strongly increase during early S-phase and rapidly decrease at the end of it. Here, we review the degradation of replication-dependent histone mRNAs, a paradigm of post-transcriptional gene regulation, in the context of processing, translation, and oligouridylation. Replication-dependent histone transcripts are characterized by the absence of introns and by the presence of a stem-loop structure at the 3' end of a very short 3' untranslated region (UTR)...
July 2014: Wiley Interdisciplinary Reviews. RNA
Kai P Hoefig, Nicola Rath, Gitta A Heinz, Christine Wolf, Jasmin Dameris, Aloys Schepers, Elisabeth Kremmer, K Mark Ansel, Vigo Heissmeyer
The exoRNase Eri1 inhibits RNA interference and trims the 5.8S rRNA 3' end. It also binds to the stem-loop of histone mRNAs, but the functional importance of this interaction remains elusive. Histone mRNAs are normally degraded at the end of S phase or after pharmacological inhibition of replication. Both processes are impaired in Eri1-deficient mouse cells, which instead accumulate oligouridylated histone mRNAs. Eri1 trims the mature histone mRNAs by two unpaired nucleotides at the 3' end but stalls close to the double-stranded stem...
January 2013: Nature Structural & Molecular Biology
Molly F Thomas, Sarah Abdul-Wajid, Marisella Panduro, Joshua E Babiarz, Misha Rajaram, Prescott Woodruff, Lewis L Lanier, Vigo Heissmeyer, K Mark Ansel
Natural killer (NK) cells play a critical role in early host defense to infected and transformed cells. Here, we show that mice deficient in Eri1, a conserved 3'-to-5' exoribonuclease that represses RNA interference, have a cell-intrinsic defect in NK-cell development and maturation. Eri1(-/-) NK cells displayed delayed acquisition of Ly49 receptors in the bone marrow (BM) and a selective reduction in Ly49D and Ly49H activating receptors in the periphery. Eri1 was required for immune-mediated control of mouse CMV (MCMV) infection...
July 5, 2012: Blood
K Mark Ansel, William A Pastor, Nicola Rath, Ariya D Lapan, Elke Glasmacher, Christine Wolf, Laura C Smith, Nikoletta Papadopoulou, Edward D Lamperti, Mamta Tahiliani, Joachim W Ellwart, Yujiang Shi, Elisabeth Kremmer, Anjana Rao, Vigo Heissmeyer
Eri1 is a 3'-to-5' exoribonuclease conserved from fission yeast to humans. Here we show that Eri1 associates with ribosomes and ribosomal RNA (rRNA). Ribosomes from Eri1-deficient mice contain 5.8S rRNA that is aberrantly extended at its 3' end, and Eri1, but not a catalytically inactive mutant, converts this abnormal 5.8S rRNA to the wild-type form in vitro and in cells. In human and murine cells, Eri1 localizes to the cytoplasm and nucleus, with enrichment in the nucleolus, the site of preribosome biogenesis...
May 2008: Nature Structural & Molecular Biology
Ricardo Almeida, Alessia Buscaino, Robin C Allshire
Heterochromatin domains are essential for normal chromosome functions. The Eri1 ribonuclease is a negative regulator of the RNA interference machinery; recent studies have shown that, in fission yeast lacking Eri1, heterochromatin formation is more promiscuous.
August 22, 2006: Current Biology: CB
Tetsushi Iida, Rika Kawaguchi, Jun-ichi Nakayama
RNA interference (RNAi) is a conserved silencing mechanism that has widespread roles in RNA degradation, translational repression, and the epigenetic control of chromatin structure [1]. In fission yeast, heterochromatin assembly requires RNAi machinery and is initiated by small interference RNAs (siRNAs) derived from heterochromatic regions and by the RNA-induced transcriptional silencing (RITS) complex [2-7]. Although recent studies have been successful in uncovering the functions of effector complexes in the RNAi pathway [4, 5, 8-10], exactly how heterochromatic siRNAs are processed and function in assembling heterochromatin remains unclear...
July 25, 2006: Current Biology: CB
Marc Bühler, André Verdel, Danesh Moazed
In the fission yeast Schizosaccharomyces pombe, the RNA-Induced Transcriptional Silencing (RITS) complex has been proposed to target the chromosome via siRNA-dependent base-pairing interactions to initiate heterochromatin formation. Here we show that tethering of the RITS subunit, Tas3, to the RNA transcript of the normally active ura4+ gene silences ura4+ expression. This silencing depends on a functional RNAi pathway, requires the heterochromatin proteins, Swi6/HP1, Clr4/Suv39h, and Sir2, and is accompanied by the generation of ura4+ siRNAs, histone H3-lysine 9 methylation, and Swi6 binding...
June 2, 2006: Cell
Andrew K Sobering, Reika Watanabe, Martin J Romeo, Benjamin C Yan, Charles A Specht, Peter Orlean, Howard Riezman, David E Levin
The yeast ERI1 gene encodes a small ER-localized protein that associates in vivo with GTP bound Ras2 in an effector loop-dependent manner. We showed previously that loss of Eri1 function results in hyperactive Ras phenotypes. Here, we demonstrate that Eri1 is a component of the GPI-GlcNAc transferase (GPI-GnT) complex in the ER, which catalyzes transfer of GlcNAc from UDP-GlcNAc to an acceptor phosphatidylinositol, the first step in the production of GPI-anchors for cell surface proteins. We also show that GTP bound Ras2 associates with the GPI-GnT complex in vivo and inhibits its activity, indicating that yeast Ras uses the ER as a signaling platform from which to negatively regulate the GPI-GnT...
May 28, 2004: Cell
Andrew K Sobering, Martin J Romeo, Heather A Vay, David E Levin
Ras oncoproteins are monomeric GTPases that link signals from the cell surface to pathways that regulate cell proliferation and differentiation. Constitutively active mutant forms of Ras are found in ca. 30% of human tumors. Here we report the isolation of a novel gene from Saccharomyces cerevisiae, designated ERI1 (for endoplasmic reticulum-associated Ras inhibitor 1), which behaves genetically as an inhibitor of Ras signaling. ERI1 encodes a 68-amino-acid protein that associates in vivo with GTP-bound Ras in a manner that requires an intact Ras-effector loop, suggesting that Eri1 competes for the same binding site as Ras target proteins...
July 2003: Molecular and Cellular Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"