Read by QxMD icon Read

Oligodendrocytes neurodegenerative

Elise Allender, Harvinderjeet Deol, Sarah Schram, Kathleen J Maheras, Alexander Gow, Eleanor H Simpson, Fei Song
Neuregulin1 (NRG1) is a differentiation factor that regulates glial development, survival, synaptogenesis, axoglial interactions, and microglial activation. We previously reported that a targeted NRG1 antagonist (HBD-S-H4) given intrathecally, reduces inflammatory microglial activation in a spinal cord pain model and a neurodegenerative disease mouse model in vivo, suggesting that it may have effects in neuroninflammatory and neuronal disorders. We hypothesized that expression of HBD-S-H4 in the central nervous system (CNS) could reduce disease severity in experimental autoimmune encephalomyelitis (EAE), a widely used animal model for multiple sclerosis (MS)...
March 10, 2018: Journal of Neuroimmunology
Peter Göttle, Anastasia Manousi, David Kremer, Laura Reiche, Hans-Peter Hartung, Patrick Küry
BACKGROUND: Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease of the central nervous system (CNS) which in most cases initially presents with episodes of transient functional deficits (relapsing-remitting MS; RRMS) and eventually develops into a secondary progressive form (SPMS). Aside from neuroimmunological activities, MS is also characterized by neurodegenerative and regenerative processes. The latter involve the restoration of myelin sheaths-electrically insulating structures which are the primary targets of autoimmune attacks...
March 13, 2018: Journal of Neuroinflammation
Bahareh Nazari, Masoud Soleimani, Somayeh Ebrahimi Barough, Seyed Ehsan Enderami, Mansure Kazemi, Babak Negahdari, Esmaeil Sadroddiny, Jafar Ai
Oligodendrocytes play critical roles in the central nervous system (CNS) thorough producing myelin sheaths around axons. There are a variety of approaches to produce oligodendrocytes in vitro and in vivo which are a subject of interest in many studies. A new approach to induce this differentiation is using microRNA 219 (miR-219). However, this new approach suffers from a lack of studies regarding the effect of miR-219 on differentiating human induced pluripotent stem cells (hiPSCs) to oligodendrocytes. This study aimed to assess the impact of miR-219-overexpression on hiPSCs...
March 9, 2018: Journal of Chemical Neuroanatomy
Jodie Stephenson, Erik Nutma, Paul van der Valk, Sandra Amor
Neurodegenerative diseases, the leading cause of morbidity and disability is gaining increased attention as it imposes a considerable socioeconomic impact, due in part to the ageing community. Neuronal damage is a pathological hallmark of Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, spinocerebellar ataxia and multiple sclerosis, although such damage is also observed following neurotropic viral infections, stroke, genetic white matter diseases and paraneoplastic disorders...
March 7, 2018: Immunology
Elena Abati, Alessio Di Fonzo, Stefania Corti
Multiple system atrophy (MSA) is a rare neurodegenerative disease with a fatal outcome. Nowadays, only symptomatic treatment is available for MSA patients. The hallmarks of the disease are glial cytoplasmic inclusions (GCIs), proteinaceous aggregates mainly composed of alpha-synuclein, which accumulate in oligodendrocytes. However, despite the extensive research efforts, little is known about the pathogenesis of MSA. Early myelin dysfunction and alpha-synuclein deposition are thought to play a major role, but the origin of the aggregates and the causes of misfolding are obscure...
March 4, 2018: Journal of Cellular and Molecular Medicine
Steven M Wellman, Takashi D Y Kozai
Neural interface technology provides direct sampling and analysis of electrical and chemical events in the brain in order to better understand neuronal function and treat neurodegenerative disease. However, intracortical electrodes experience inflammatory reactions that reduce long-term stability and functionality and are understood to be facilitated by activated microglia and astrocytes. Emerging studies have identified another cell type that participates in the formation of a high-impedance glial scar following brain injury; the oligodendrocyte precursor cell (OPC)...
February 20, 2018: Biomaterials
Carmen Navarrete, Francisco Carrillo-Salinas, Belén Palomares, Miriam Mecha, Carla Jiménez-Jiménez, Leyre Mestre, Ana Feliú, Maria L Bellido, Bernd L Fiebich, Giovanni Appendino, Marco A Calzado, Carmen Guaza, Eduardo Muñoz
BACKGROUND: Multiple sclerosis (MS) is characterized by a combination of inflammatory and neurodegenerative processes variously dominant in different stages of the disease. Thus, immunosuppression is the goal standard for the inflammatory stage, and novel remyelination therapies are pursued to restore lost function. Cannabinoids such as9 Δ-THC and CBD are multi-target compounds already introduced in the clinical practice for multiple sclerosis (MS). Semisynthetic cannabinoids are designed to improve bioactivities and druggability of their natural precursors...
March 1, 2018: Journal of Neuroinflammation
M A Olude, S T Bello, O A Mustapha, F E Olopade, J Plendl, A O Ihunwo, J O Olopade
Oligodendrocyte and myelin-related studies have been pivotal in understanding disruption of central nervous system (CNS) myelin through injury, toxicological, pathological degeneration or genetic intervention. The African giant rat (AGR) has been postulated as an indigenous wild-type model within the African context. This work thus describes oligodendrocyte morphologies and myelin components of the developing African giant rat brain using histological, immunohistochemical and ultrastructural techniques. Five types, precursor-progenitor oligodendrocytes, pre-oligodendrocytes, immature oligodendrocytes, mature non-myelinating oligodendrocytes and mature myelinating oligodendrocytes, were identified...
March 1, 2018: Anatomia, Histologia, Embryologia
Maryem Bezine, Sonia Maatoug, Rym Ben Khalifa, Meryam Debbabi, Amira Zarrouk, Yuqin Wang, William J Griffiths, Thomas Nury, Mohammad Samadi, Anne Vejux, Jérôme de Sèze, Thibault Moreau, Riadh Kharrat, Mohamed El Ayeb, Gérard Lizard
Little is known about K+ regulation playing major roles in the propagation of nerve impulses, as well as in apoptosis and inflammasome activation involved in neurodegeneration. As increased levels of 7-ketocholesterol (7KC), 24S-hydroxycholesterol (24S-OHC) and tetracosanoic acid (C24:0) have been observed in patients with neurodegenerative diseases, we studied the effect of 24 and/or 48 h of treatment with 7KC, 24S-OHC and C24:0 on Kv3.1b potassium channel level, intracellular K+ concentration, oxidative stress, mitochondrial dysfunction, and plasma membrane permeability in 158N oligodendrocytes and BV-2 microglial cells...
February 17, 2018: Biochimie
Juan-Juan Li, Shun-Jin Liu, Xiao-Yu Liu, Eng-Ang Ling
BACKGROUND: Activated microglia play a pivotal role neurodegenerative diseases by producing a variety of proinflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukin-1bea (IL-1β) and nitric oxide (NO) that are toxic to neurons and oligodendrocytes. METHODS: In view of the above, suppression of microglia mediated neuroinflammation is deemed a therapeutic strategy for neurodegenerative diseases. Several potential Chinese herbal extracts have been reported to exert neuroprotective effects against neurodegenerative diseases targeting specifically at the activated microglia...
February 14, 2018: Current Medicinal Chemistry
Jit Chatterjee, Rajesha K Nairy, Jaldeep Langhnoja, Ashutosh Tripathi, Rajashekhar K Patil, Prakash P Pillai, Mohammed S Mustak
Ionizing radiation induces various pathophysiological conditions by altering central nervous system (CNS) homeostasis, leading to neurodegenerative diseases. However, the potential effect of ionizing radiation response on cellular physiology in glial cells is unclear. In the present study, micronucleus test, comet assay, and RT-PCR were performed to investigate the potential effect of gamma radiation in cultured oligodendrocytes and astrocytes with respect to genomic instability, Endoplasmic Reticulum (ER) stress, and inflammation...
February 10, 2018: Metabolic Brain Disease
Alexander Gregath, Richard Q Lu
Myelination by oligodendrocytes in the central nervous system permits high fidelity saltatory conduction from neuronal cell bodies to axon terminals. Dysmyelinating and demyelinating disorders impair normal nervous system functions. Consequently, an understanding of oligodendrocyte differentiation that moves beyond the genetic code into the field of epigenetics is essential. Chromatin reprogramming is critical for steering stage-specific differentiation processes during oligodendrocyte development. Fine temporal control of chromatin remodeling through ATP-dependent chromatin remodelers and sequential histone modifiers shapes a chromatin regulatory landscape conducive to oligodendrocyte fate specification, lineage differentiation, and maintenance of cell identity...
February 10, 2018: FEBS Letters
Giusy T Coppolino, Davide Marangon, Camilla Negri, Gianluca Menichetti, Marta Fumagalli, Paolo Gelosa, Leda Dimou, Roberto Furlan, Davide Lecca, Maria P Abbracchio
Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17-iCreERT2 xCAG-eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen-induced GFP-labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult...
February 9, 2018: Glia
Susmita Sil, Palsamy Periyasamy, Annadurai Thangaraj, Ernest T Chivero, Shilpa Buch
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are expressed in several cell types including the brain cells such as neuronal progenitors, neurons, astrocytes, and oligodendrocytes. Emerging evidence shows that PDGF-mediated signaling regulates diverse functions in the central nervous system (CNS) such as neurogenesis, cell survival, synaptogenesis, modulation of ligand-gated ion channels, and development of specific types of neurons. Interestingly, PDGF/PDFGR signaling can elicit paradoxical roles in the CNS, depending on the cell type and the activation stimuli and is implicated in the pathogenesis of various neurodegenerative diseases...
February 6, 2018: Molecular Aspects of Medicine
Eisuke Dohi, Eric Y Choi, Indigo V L Rose, Akiho S Murata, Sharon Chow, Minae Niwa, Shin-Ichi Kano
Interleukin (IL)-33 is a member of the IL-1 family of cytokines. IL-33 is expressed in nuclei and secreted as alarmin upon cellular damage to deliver a danger signal to the surrounding cells. Previous studies showed that IL-33 is expressed in the brain and that it is involved in neuroinflammatory and neurodegenerative processes in both humans and rodents. Nevertheless, the role of IL-33 in physiological brain function and behavior remains unclear. Here, we have investigated the behaviors of mice lacking IL-33 (Il33-/- mice)...
November 2017: ENeuro
Attila Ozsvár, Róbert Szipőcs, Zoltán Ozsvár, Judith Baka, Pál Barzó, Gábor Tamás, Gábor Molnár
Degradation of myelin sheath is thought to be the cause of neurodegenerative diseases, such as multiple sclerosis (MS), but definitive agreement on mechanism of how myelin is lost is currently lacking. Autoimmune initiation of MS has been recently questioned by proposing that the immune response is a consequence of oligodendrocyte degeneration. To study the process of myelin breakdown, we induced demyelination with cuprizone and applied coherent anti-Stokes Raman scattering (CARS) microscopy, a non-destructive label-free method to image lipid structures in living tissue...
January 8, 2018: Brain Research Bulletin
Kyle M Koss, Matthew A Churchward, Andrea F Jeffery, Vivian K Mushahwar, Anastasia L Elias, Kathryn G Todd
In the central nervous system, numerous acute injuries and neurodegenerative disorders, as well as implanted devices or biomaterials engineered to enhance function result in the same outcome: excess inflammation leads to gliosis, cytotoxicity, and/or formation of a glial scar that collectively exacerbate injury or prevent healthy recovery. With the intent of creating a system to model glial scar formation and study inflammatory processes, we have generated a 3D cell scaffold capable of housing primary cultured glial cells: microglia that regulate the foreign body response and initiate the inflammatory event, astrocytes that respond to form a fibrous scar, and oligodendrocytes that are typically vulnerable to inflammatory injury...
December 8, 2017: Journal of Visualized Experiments: JoVE
Nan Li, Jinfeng Han, Jing Tang, Yanqin Ying
Oligodendrocytes (OLs) are glial cells that form myelin sheaths in the central nervous system. Myelin sheath plays important role in nervous system and loss of it in neurodegenerative diseases can lead to impairment of movement. Understanding the signals and factors that regulate OL differentiation can help to address novel strategies for improving myelin repair in neurodegenerative diseases. The aim of this study was to investigate the role of insulin-like growth factor-binding proteins 7 (IGFBP-7) in differentiating OL precursor cells (OPCs)...
December 26, 2017: Journal of Cellular Biochemistry
Roy Y Kim, Darian Mangu, Alexandria S Hoffman, Rojan Kavosh, Eunice Jung, Noriko Itoh, Rhonda Voskuhl
Oestrogen treatments are neuroprotective in a variety of neurodegenerative disease models. Selective oestrogen receptor modifiers are needed to optimize beneficial effects while minimizing adverse effects to achieve neuroprotection in chronic diseases. Oestrogen receptor beta (ERβ) ligands are potential candidates. In the multiple sclerosis model chronic experimental autoimmune encephalomyelitis, ERβ-ligand treatment is neuroprotective, but mechanisms underlying this neuroprotection remain unclear...
January 1, 2018: Brain: a Journal of Neurology
Kazuya Kuboyama, Naomi Tanga, Ryoko Suzuki, Akihiro Fujikawa, Masaharu Noda
Chondroitin sulfate proteoglycans (CSPGs), which are enriched in demyelinating plaques in neurodegenerative diseases, such as multiple sclerosis (MS), impair remyelination by inhibiting the migration and differentiation of oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). We herein show that protamine (PRM, also known as a heparin antagonist) effectively neutralizes the inhibitory activities of CSPGs, thereby enhancing OPC differentiation and (re)myelination in mice. Cell-based assays using mouse OPC-like OL1 cells revealed that the PRM treatment exerted masking effects on extracellular CSPGs and improved oligodendrocyte differentiation on inhibitory CSPG-coated substrates...
2017: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"