Read by QxMD icon Read

Succinyl CoA synthetase

Eleni Theodosiou, Marina Breisch, Mattijs K Julsing, Francesco Falcioni, Bruno Bühler, Andreas Schmid
Amino acid hydroxylases depend directly on the cellular TCA cycle via their cosubstrate α-ketoglutarate (α-KG) and are highly useful for the selective biocatalytic oxyfunctionalization of amino acids. This study evaluates TCA cycle engineering strategies to force and increase α-KG flux through proline-4-hydroxylase (P4H). The genes sucA (α-KG dehydrogenase E1 subunit) and sucC (succinyl-CoA synthetase β subunit) were alternately deleted together with aceA (isocitrate lyase) in proline degradation-deficient Escherichia coli strains (ΔputA) expressing the p4h gene...
March 7, 2017: Biotechnology and Bioengineering
Loreine Agulló, María José Romero-Silva, Mirian Domenech, Michael Seeger
p-Cymene is an aromatic terpene that is present in diverse plant species. The aims of this study were to study the p-cymene metabolism in the model aromatic-degrading bacterium Burkholderia xenovorans LB400, and its response to p-cymene. The catabolic p-cymene (cym) and p-cumate (cmt) genes are clustered on the LB400 major chromosome. B. xenovorans LB400 was able to grow on p-cymene as well as on p-cumate as a sole carbon and energy sources. LB400 growth attained higher cell concentration at stationary phase on p-cumate than on p-cymene...
2017: PloS One
Xiuming Quan, Yukiko Sato-Miyata, Manabu Tsuda, Keigo Muramatsu, Tsunaki Asano, Satomi Takeo, Toshiro Aigaki
Succinyl-CoA synthetase/ligase (SCS) is a mitochondrial enzyme that catalyzes the reversible process from succinyl-CoA to succinate and free coenzyme A in TCA cycle. SCS deficiencies are implicated in mitochondrial hepatoencephalomyopathy in humans. To investigate the impact of SCS deficiencies in Drosophila, we generated a null mutation in Scs alpha subunit (Scsα) using the CRISPR/Cas9 system, and characterized their phenotype. We found that the Drosophila SCS deficiency, designated Scsα(KO), contained a high level of succinyl-CoA, a substrate for the enzyme, and altered levels of various metabolites in TCA cycle and glycolysis, indicating that the energy metabolism was impaired...
January 29, 2017: Biochemical and Biophysical Research Communications
Xiaoping Huang, Jirair K Bedoyan, Didem Demirbas, David J Harris, Alexander Miron, Simone Edelheit, George Grahame, Suzanne D DeBrosse, Lee-Jun Wong, Charles L Hoppel, Douglas S Kerr, Irina Anselm, Gerard T Berry
Mutations in SUCLA2 result in succinyl-CoA ligase (ATP-forming) or succinyl-CoA synthetase (ADP-forming) (A-SCS) deficiency, a mitochondrial tricarboxylic acid cycle disorder. The phenotype associated with this gene defect is largely encephalomyopathy. We describe two siblings compound heterozygous for SUCLA2 mutations, c.985A>G (p.M329V) and c.920C>T (p.A307V), with parents confirmed as carriers of each mutation. We developed a new LC-MS/MS based enzyme assay to demonstrate the decreased SCS activity in the siblings with this unique genotype...
March 2017: Molecular Genetics and Metabolism
Yunhe Zhao, Kaidi Cui, Chunmei Xu, Qiuhong Wang, Yao Wang, Zhengqun Zhang, Feng Liu, Wei Mu
Benzothiazole, a microbial secondary metabolite, has been demonstrated to possess fumigant activity against Sclerotinia sclerotiorum, Ditylenchus destructor and Bradysia odoriphaga. However, to facilitate the development of novel microbial pesticides, the mode of action of benzothiazole needs to be elucidated. Here, we employed iTRAQ-based quantitative proteomics analysis to investigate the effects of benzothiazole on the proteomic expression of B. odoriphaga. In response to benzothiazole, 92 of 863 identified proteins in B...
November 24, 2016: Scientific Reports
Andrew J Loder, Yejun Han, Aaron B Hawkins, Hong Lian, Gina L Lipscomb, Gerrit J Schut, Matthew W Keller, Michael W W Adams, Robert M Kelly
The 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle fixes CO2 in extremely thermoacidophilic archaea and holds promise for metabolic engineering because of its thermostability and potentially rapid pathway kinetics. A reaction kinetics model was developed to examine the biological and biotechnological attributes of the 3HP/4HB cycle as it operates in Metallosphaera sedula, based on previous information as well as on kinetic parameters determined here for recombinant versions of five of the cycle enzymes (malonyl-CoA/succinyl-CoA reductase, 3-hydroxypropionyl-CoA synthetase, 3-hydroxypropionyl-CoA dehydratase, acryloyl-CoA reductase, and succinic semialdehyde reductase)...
November 2016: Metabolic Engineering
Lalit Agrawal, Swati Gupta, Shashank K Mishra, Garima Pandey, Susheel Kumar, Puneet S Chauhan, Debasis Chakrabarty, Chandra S Nautiyal
Along with many adaptive strategies, dynamic changes in protein abundance seem to be the common strategy to cope up with abiotic stresses which can be best explored through proteomics. Understanding of drought response is the key to decipher regulatory mechanism of better adaptation. Rice (Oryza sativa L.) proteome represents a phenomenal source of proteins that govern traits of agronomic importance, such as drought tolerance. In this study, a comparison of root cytoplasmic proteome was done for a drought tolerant rice (Heena) cultivar in PEG induced drought conditions...
2016: Frontiers in Plant Science
Zhijie Liu, Tiangang Liu
Acrylic acid and propionic acid are important chemicals requiring affordable, renewable production solutions. Here, we metabolically engineered Escherichia coli with genes encoding components of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula for conversion of glucose to acrylic and propionic acids. To construct an acrylic acid-producing pathway in E. coli, heterologous expression of malonyl-CoA reductase (MCR), malonate semialdehyde reductase (MSR), 3-hydroxypropionyl-CoA synthetase (3HPCS), and 3-hydroxypropionyl-CoA dehydratase (3HPCD) from M...
October 8, 2016: Journal of Industrial Microbiology & Biotechnology
Cláudia Gomes, Noemí Palma, Maria J Pons, Ariel Magallón-Tejada, Isabel Sandoval, Carmen Tinco-Valdez, Carlos Gutarra, Juana Del Valle-Mendoza, Joaquim Ruiz, Mayumi Matsuoka
BACKGROUND: Bartonella bacilliformis is the causative agent of Carrion's disease, a neglected illness with mortality rates of 40-85% in the absence of treatment. The lack of a diagnostic technique to overcome misdiagnosis and treat asymptomatic carriers is of note. This study aimed to identify new B. bacilliformis antigenic candidates that could lead to a new diagnostic tool able to be implemented in endemic rural areas. METHODOLOGY/PRINCIPAL FINDINGS: Blood (n = 198) and serum (n = 177) samples were collected in northern Peru...
September 2016: PLoS Neglected Tropical Diseases
Giselle Villa Flor Brunoro, Vitor Marcel Faça, Marcelle Almeida Caminha, André Teixeira da Silva Ferreira, Monique Trugilho, Kelly Cristina Gallan de Moura, Jonas Perales, Richard Hemmi Valente, Rubem Figueiredo Sadok Menna-Barreto
BACKGROUND: The obligate intracellular protozoan Trypanosoma cruzi is the causative agent of Chagas disease, a neglected illness affecting millions of people in Latin America that recently entered non-endemic countries through immigration, as a consequence of globalization. The chemotherapy for this disease is based mainly on benznidazole and nifurtimox, which are very efficient nitroderivatives against the acute stage but present limited efficacy during the chronic phase. Our group has been studying the trypanocidal effects of naturally occurring quinones and their derivatives, and naphthoimidazoles derived from β-lapachone N1, N2 and N3 were the most active...
August 2016: PLoS Neglected Tropical Diseases
Ji Huang, Marie E Fraser
Succinyl-CoA synthetase catalyzes the only step in the citric acid cycle that provides substrate-level phosphorylation. Although the binding sites for the substrates CoA, phosphate, and the nucleotides ADP and ATP or GDP and GTP have been identified, the binding site for succinate has not. To determine this binding site, pig GTP-specific succinyl-CoA synthetase was crystallized in the presence of succinate, magnesium ions and CoA, and the structure of the complex was determined by X-ray crystallography to 2...
August 2016: Acta Crystallographica. Section D, Structural Biology
Taraka R Donti, Ruchi Masand, Daryl A Scott, William J Craigen, Brett H Graham
Deficiency of the TCA cycle enzyme Succinyl-CoA Synthetase/Ligase (SCS), due to pathogenic variants in subunits encoded by SUCLG1 and SUCLA2, causes mitochondrial encephalomyopathy, methylmalonic acidemia, and mitochondrial DNA (mtDNA) depletion. In this study, we report an 11year old patient who presented with truncal ataxia, chorea, hypotonia, bilateral sensorineural hearing loss and preserved cognition. Whole exome sequencing identified a heterozygous known pathogenic variant and a heterozygous novel missense variant of uncertain clinical significance (VUS) in SUCLG1...
September 2016: Molecular Genetics and Metabolism
Kapil Vashisht, Sonia Verma, Sunita Gupta, Andrew M Lynn, Rajnikant Dixit, Neelima Mishra, Neena Valecha, Karleigh A Hamblin, Robin Maytum, Kailash C Pandey, Mark van der Giezen
Charged, solvent-exposed residues at the entrance to the substrate binding site (gatekeeper residues) produce electrostatic dipole interactions with approaching substrates, and control their access by a novel mechanism called "electrostatic gatekeeper effect". This proof-of-concept study demonstrates that the nucleotide specificity can be engineered by altering the electrostatic properties of the gatekeeper residues outside the binding site. Using Blastocystis succinyl-CoA synthetase (SCS, EC, we demonstrated that the gatekeeper mutant (ED) resulted in ATP-specific SCS to show high GTP specificity...
January 11, 2017: Biochemistry
Andrew Iverson, Erin Garza, Ryan Manow, Jinhua Wang, Yuanyuan Gao, Scott Grayburn, Shengde Zhou
BACKGROUND: Anaerobic rather than aerobic fermentation is preferred for conversion of biomass derived sugars to high value redox-neutral and reduced commodities. This will likely result in a higher yield of substrate to product conversion and decrease production cost since substrate often accounts for a significant portion of the overall cost. To this goal, metabolic pathway engineering has been used to optimize substrate carbon flow to target products. This approach works well for the production of redox neutral products such as lactic acid from redox neutral sugars using the reducing power NADH (nicotinamide adenine dinucleotide, reduced) generated from glycolysis (2 NADH per glucose equivalent)...
April 16, 2016: BMC Systems Biology
Lior Aram, Tslil Braun, Carmel Braverman, Yosef Kaplan, Liat Ravid, Smadar Levin-Zaidman, Eli Arama
How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids...
April 4, 2016: Developmental Cell
Wuyuan Deng, Yang Yang, Peng Gao, Hao Chen, Wenting Wen, Qun Sun
To explore the radiation-resistance mechanisms in bacteria, a radiation-resistant strain SC1204 was isolated from the surrounding area of a (60)Co-γ radiation facility. SC1204 could survive up to 8 kGy dose of gamma irradiation and was identified as Micrococcus luteus by phylogenetic analysis of 16S rRNA gene sequences. Its proteomic changes under 2-kGy irradiation were examined by two-dimensional electrophoresis followed by MALDI-TOF-TOF/MS analysis. The results showed that at least 24 proteins displayed significant changes (p < 0...
June 2016: Current Microbiology
Xin Tang, Xinyi Zan, Lina Zhao, Haiqin Chen, Yong Q Chen, Wei Chen, Yuanda Song, Colin Ratledge
BACKGROUND: The oleaginous fungus, Mucor circinelloides, is attracting considerable interest as it produces oil rich in γ-linolenic acid. Nitrogen (N) deficiency is a common strategy to trigger the lipid accumulation in oleaginous microorganisms. Although a simple pathway from N depletion in the medium to lipid accumulation has been elucidated at the enzymatic level, global changes at protein levels upon N depletion have not been investigated. In this study, we have systematically analyzed the changes at the levels of protein expression in M...
2016: Microbial Cell Factories
Fumiya Noguchi, Shigeru Shimamura, Takuro Nakayama, Euki Yazaki, Akinori Yabuki, Tetsuo Hashimoto, Yuji Inagaki, Katsunori Fujikura, Kiyotaka Takishita
Functionally and morphologically degenerate mitochondria, so-called mitochondrion-related organelles (MROs), are frequently found in eukaryotes inhabiting hypoxic or anoxic environments. In the last decade, MROs have been discovered from a phylogenetically broad range of eukaryotic lineages and these organelles have been revealed to possess diverse metabolic capacities. In this study, the biochemical characteristics of an MRO in the free-living anaerobic protist Cantina marsupialis, which represents an independent lineage in stramenopiles, were inferred based on RNA-seq data...
November 2015: Protist
Ines Kiefler, Stephanie Bringer, Michael Bott
The obligatory aerobic α-proteobacterium Gluconobacter oxydans 621H possesses an unusual metabolism in which the majority of the carbohydrate substrates are incompletely oxidized in the periplasm and only a small fraction is metabolized in the cytoplasm. The cytoplasmic oxidation capabilities are limited due to an incomplete tricarboxylic acid (TCA) cycle caused by the lack of succinate dehydrogenase (Sdh) and succinyl-CoA synthetase. As a first step to test the consequences of a functional TCA cycle for growth, metabolism, and bioenergetics of G...
November 2015: Applied Microbiology and Biotechnology
Zeljko Simic, Matthias Weiwad, Angelika Schierhorn, Clemens Steegborn, Mike Schutkowski
Mitochondrial enzymes implicated in the pathophysiology of diabetes, cancer, and metabolic syndrome are highly regulated by acetylation. However, mitochondrial acetyltransferases have not been identified. Here, we show that acetylation and also other acylations are spontaneous processes that depend on pH value, acyl-CoA concentration and the chemical nature of the acyl residue. In the case of a peptide derived from carbamoyl phosphate synthetase 1, the rates of succinylation and glutarylation were up to 150 times than for acetylation...
November 2, 2015: Chembiochem: a European Journal of Chemical Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"