Read by QxMD icon Read

Donald M Bers

Robyn T Rebbeck, Maram M Essawy, Florentin R Nitu, Benjamin D Grant, Gregory D Gillispie, David D Thomas, Donald M Bers, Razvan L Cornea
Using time-resolved fluorescence resonance energy transfer (FRET), we have developed and validated the first high-throughput screening (HTS) method to discover compounds that modulate an intracellular Ca(2+) channel, the ryanodine receptor (RyR), for therapeutic applications. Intracellular Ca(2+) regulation is critical for striated muscle function, and RyR is a central player. At resting [Ca(2+)], an increased propensity of channel opening due to RyR dysregulation is associated with severe cardiac and skeletal myopathies, diabetes, and neurological disorders...
October 19, 2016: Journal of Biomolecular Screening
Donald M Bers
No abstract text is available yet for this article.
October 7, 2016: Heart Rhythm: the Official Journal of the Heart Rhythm Society
Ryan D Himes, Nikolai Smolin, Andreas Kukol, Julie Bossuyt, Donald M Bers, Seth L Robia
To determine if mutations made to PLM could increase PLM-NKA binding we performed scanning mutagenesis of the transmembrane domain of PLM and measured FRET between each mutant and NKA. We observed increased binding to NKA for several PLM mutants compared to WT, including L27A, L30A, and I32A. In isolated cardiomyocytes, overexpression of WT PLM increased the amplitude of the Ca2+ transient compared to GFP control. Ca2+ transient amplitude was further increased by L30A PLM overexpression. L30A mutation also delayed Ca2+ extrusion and increased the duration of cardiomyocyte contraction...
October 10, 2016: Biochemistry
Samuel Galice, Donald M Bers, Daisuke Sato
Cardiac alternans has been linked to the onset of ventricular fibrillation and ventricular tachycardia, leading to life-threatening arrhythmias. Here, we investigated the effects of stretch-activated currents (ISAC) on alternans using a physiologically detailed model of the ventricular myocyte. We found that increasing ISAC suppresses alternans if the voltage-Ca coupling is positive or the alternans is voltage driven. However, for electromechanically discordant alternans, which occurs when the alternans is Ca driven with negative voltage-Ca coupling, increasing ISAC promotes Ca alternans...
June 21, 2016: Biophysical Journal
Hitoshi Uchinoumi, Yi Yang, Tetsuro Oda, Na Li, Katherina M Alsina, Jose L Puglisi, Ye Chen-Izu, Razvan L Cornea, Xander H T Wehrens, Donald M Bers
Diastolic calcium (Ca) leak via cardiac ryanodine receptors (RyR2) can cause arrhythmias and heart failure (HF). Ca/calmodulin (CaM)-dependent kinase II (CaMKII) is upregulated and more active in HF, promoting RyR2-mediated Ca leak by RyR2-Ser2814 phosphorylation. Here, we tested a mechanistic hypothesis that RyR2 phosphorylation by CaMKII increases Ca leak by promoting a pathological RyR2 conformation with reduced CaM affinity. Acute CaMKII activation in wild-type RyR2, and phosphomimetic RyR2-S2814D (vs. non-phosphorylatable RyR2-S2814A) knock-in mouse myocytes increased SR Ca leak, reduced CaM-RyR2 affinity, and caused a pathological shift in RyR2 conformation (detected via increased access of the RyR2 structural peptide DPc10)...
September 2016: Journal of Molecular and Cellular Cardiology
Robyn T Rebbeck, Florentin R Nitu, David Rohde, Patrick Most, Donald M Bers, David D Thomas, Razvan L Cornea
S100A1 has been suggested as a therapeutic agent to enhance myocyte Ca(2+) cycling in heart failure, but its molecular mode of action is poorly understood. Using FRET, we tested the hypothesis that S100A1 directly competes with calmodulin (CaM) for binding to intact, functional ryanodine receptors type I (RyR1) and II (RyR2) from skeletal and cardiac muscle, respectively. Our FRET readout provides an index of acceptor-labeled CaM binding near donor-labeled FKBP (FK506-binding protein 12.6) on the cytoplasmic domain of RyR in isolated sarcoplasmic reticulum vesicles...
July 22, 2016: Journal of Biological Chemistry
Daisuke Sato, Thomas R Shannon, Donald M Bers
Calcium (Ca) sparks are the fundamental sarcoplasmic reticulum (SR) Ca release events in cardiac myocytes, and they have a typical duration of 20-40 ms. However, when a fraction of ryanodine receptors (RyRs) are blocked by tetracaine or ruthenium red, Ca sparks lasting hundreds of milliseconds have been observed experimentally. The fundamental mechanism underlying these extremely prolonged Ca sparks is not understood. In this study, we use a physiologically detailed mathematical model of subcellular Ca cycling to examine how Ca spark duration is influenced by the number of functional RyRs in a junctional cluster (which is reduced by tetracaine or ruthenium red) and other SR Ca handling properties...
January 19, 2016: Biophysical Journal
Xiyuan Lu, Jennifer Q Kwong, Jeffery D Molkentin, Donald M Bers
RATIONALE: Mitochondria produce ATP, especially critical for survival of highly aerobic cells, such as cardiac myocytes. Conversely, opening of mitochondrial high-conductance and long-lasting permeability transition pores (mPTP) causes respiratory uncoupling, mitochondrial injury, and cell death. However, low conductance and transient mPTP openings (tPTP) might limit mitochondrial Ca(2+) load and be cardioprotective, but direct evidence for tPTP in cells is limited. OBJECTIVE: To directly characterize tPTP occurrence during sarcoplasmic reticulum Ca(2+) release in adult cardiac myocytes...
March 4, 2016: Circulation Research
Gregory S Hoeker, Mohamed A Hanafy, Robert A Oster, Donald M Bers, Steven M Pogwizd
RATIONALE: Calcium/calmodulin-dependent protein kinase II (CaMKII) is activated in heart failure (HF) and can contribute to arrhythmias induced by β-adrenergic receptor-mediated sarcoplasmic reticulum calcium leak. OBJECTIVE: To evaluate the effect of CaMKII inhibition on ventricular tachycardia (VT) induction in conscious HF and naive rabbits. METHODS AND RESULTS: Nonischemic HF was induced by aortic insufficiency and constriction. Electrocardiograms were recorded in rabbits pretreated with vehicle (saline) or the CaMKII inhibitor KN-93 (300 μg/kg); VT was induced by infusion of increasing doses of norepinephrine (1...
March 2016: Journal of Cardiovascular Pharmacology
Donald M Bers
No abstract text is available yet for this article.
October 9, 2015: Circulation Research
Yuanfang Xie, Zhandi Liao, Eleonora Grandi, Yohannes Shiferaw, Donald M Bers
BACKGROUND: Most cardiac arrhythmias occur intermittently. As a cellular precursor of lethal cardiac arrhythmias, early afterdepolarizations (EADs) during action potentials(APs) have been extensively investigated, and mechanisms for the occurrence of EADs on a beat-to-beat basis have been proposed. However, no previous study explains slow fluctuations in EADs, which may underlie intermittency of EAD trains and consequent arrhythmias. We hypothesize that the feedback of intracellular calcium and sodium concentrations ([Na](i) and [Ca](i)) that influence membrane voltage (V) can explain EAD intermittency...
December 2015: Circulation. Arrhythmia and Electrophysiology
Pearl Quijada, Nirmala Hariharan, Jonathan D Cubillo, Kristin M Bala, Jacqueline M Emathinger, Bingyan J Wang, Lucia Ormachea, Donald M Bers, Mark A Sussman, Coralie Poizat
Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) signaling in the heart regulates cardiomyocyte contractility and growth in response to elevated intracellular Ca(2+). The δB isoform of CaMKII is the predominant nuclear splice variant in the adult heart and regulates cardiomyocyte hypertrophic gene expression by signaling to the histone deacetylase HDAC4. However, the role of CaMKIIδ in cardiac progenitor cells (CPCs) has not been previously explored. During post-natal growth endogenous CPCs display primarily cytosolic CaMKIIδ, which localizes to the nuclear compartment of CPCs after myocardial infarction injury...
October 16, 2015: Journal of Biological Chemistry
Jeffrey R Erickson, C Blake Nichols, Hitoshi Uchinoumi, Matthew L Stein, Julie Bossuyt, Donald M Bers
NO is known to modulate calcium handling and cellular signaling in the myocardium, but key targets for NO in the heart remain unidentified. Recent reports have implied that NO can activate calcium/calmodulin (Ca(2+)/CaM)-dependent protein kinase II (CaMKII) in neurons and the heart. Here we use our novel sensor of CaMKII activation, Camui, to monitor changes in the conformation and activation of cardiac CaMKII (CaMKIIδ) activity after treatment with the NO donor S-nitrosoglutathione (GSNO). We demonstrate that exposure to NO after Ca(2+)/CaM binding to CaMKIIδ results in autonomous kinase activation, which is abolished by mutation of the Cys-290 site...
October 16, 2015: Journal of Biological Chemistry
Stefano Morotti, Andrew D McCulloch, Donald M Bers, Andrew G Edwards, Eleonora Grandi
BACKGROUND: We have previously shown that non-equilibrium Na(+) current (INa) reactivation drives isoproterenol-induced phase-3 early afterdepolarizations (EADs) in mouse ventricular myocytes. In these cells, EAD initiation occurs secondary to potentiated sarcoplasmic reticulum Ca(2+) release and enhanced Na(+)/Ca(2+) exchange (NCX). This can be abolished by tetrodotoxin-blockade of INa, but not ranolazine, which selectively inhibits ventricular late INa. AIM: Since repolarization of human atrial myocytes is similar to mouse ventricular myocytes in that it is relatively rapid and potently modulated by Ca(2+), we investigated whether similar mechanisms can evoke EADs in human atrium...
July 2016: Journal of Molecular and Cellular Cardiology
Jennifer Q Kwong, Xiyuan Lu, Robert N Correll, Jennifer A Schwanekamp, Ronald J Vagnozzi, Michelle A Sargent, Allen J York, Jianyi Zhang, Donald M Bers, Jeffery D Molkentin
In the heart, augmented Ca(2+) fluxing drives contractility and ATP generation through mitochondrial Ca(2+) loading. Pathologic mitochondrial Ca(2+) overload with ischemic injury triggers mitochondrial permeability transition pore (MPTP) opening and cardiomyocyte death. Mitochondrial Ca(2+) uptake is primarily mediated by the mitochondrial Ca(2+) uniporter (MCU). Here, we generated mice with adult and cardiomyocyte-specific deletion of Mcu, which produced mitochondria refractory to acute Ca(2+) uptake, with impaired ATP production, and inhibited MPTP opening upon acute Ca(2+) challenge...
July 7, 2015: Cell Reports
Haodi Wu, Jaecheol Lee, Ludovic G Vincent, Qingtong Wang, Mingxia Gu, Feng Lan, Jared M Churko, Karim I Sallam, Elena Matsa, Arun Sharma, Joseph D Gold, Adam J Engler, Yang K Xiang, Donald M Bers, Joseph C Wu
β-adrenergic signaling pathways mediate key aspects of cardiac function. Its dysregulation is associated with a range of cardiac diseases, including dilated cardiomyopathy (DCM). Previously, we established an iPSC model of familial DCM from patients with a mutation in TNNT2, a sarcomeric protein. Here, we found that the β-adrenergic agonist isoproterenol induced mature β-adrenergic signaling in iPSC-derived cardiomyocytes (iPSC-CMs) but that this pathway was blunted in DCM iPSC-CMs. Although expression levels of several β-adrenergic signaling components were unaltered between control and DCM iPSC-CMs, we found that phosphodiesterases (PDEs) 2A and PDE3A were upregulated in DCM iPSC-CMs and that PDE2A was also upregulated in DCM patient tissue...
July 2, 2015: Cell Stem Cell
Tetsuro Oda, Yi Yang, Hitoshi Uchinoumi, David D Thomas, Ye Chen-Izu, Takayoshi Kato, Takeshi Yamamoto, Masafumi Yano, Razvan L Cornea, Donald M Bers
Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in heart failure (HF) and arrhythmias. Altered RyR2 domain-domain interaction (domain unzipping) and calmodulin (CaM) binding affinity are allosterically coupled indices of RyR2 conformation. In HF RyR2 exhibits reduced CaM binding, increased domain unzipping and greater SR Ca leak, and dantrolene can reverse these changes. However, effects of oxidative stress on RyR2 conformation and leak in myocytes are poorly understood. We used fluorescent CaM, FKBP12...
August 2015: Journal of Molecular and Cellular Cardiology
Michael Grimm, Haiyun Ling, Andrew Willeford, Laetitia Pereira, Charles B B Gray, Jeffrey R Erickson, Satyam Sarma, Jonathan L Respress, Xander H T Wehrens, Donald M Bers, Joan Heller Brown
Chronic activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the deleterious effects of β-adrenergic receptor (β-AR) signaling on the heart, in part, by enhancing RyR2-mediated sarcoplasmic reticulum (SR) Ca(2+) leak. We used CaMKIIδ knockout (CaMKIIδ-KO) mice and knock-in mice with an inactivated CaMKII site S2814 on the ryanodine receptor type 2 (S2814A) to investigate the involvement of these processes in β-AR signaling and cardiac remodeling. Langendorff-perfused hearts from CaMKIIδ-KO mice showed inotropic and chronotropic responses to isoproterenol (ISO) that were similar to those of wild type (WT) mice; however, in CaMKIIδ-KO mice, CaMKII phosphorylation of phospholamban and RyR2 was decreased and isolated myocytes from CaMKIIδ-KO mice had reduced SR Ca(2+) leak in response to isoproterenol (ISO)...
August 2015: Journal of Molecular and Cellular Cardiology
Stefan Wagner, Lars S Maier, Donald M Bers
Despite improvements in the therapy of underlying heart disease, sudden cardiac death is a major cause of death worldwide. Disturbed Na and Ca handling is known to be a major predisposing factor for life-threatening tachyarrhythmias. In cardiomyocytes, many ion channels and transporters, including voltage-gated Na and Ca channels, cardiac ryanodine receptors, Na/Ca-exchanger, and SR Ca-ATPase are involved in this regulation. We have learned a lot about the pathophysiological relevance of disturbed ion channel function from monogenetic disorders...
June 5, 2015: Circulation Research
Laëtitia Pereira, Holger Rehmann, Dieu Hung Lao, Jeffrey R Erickson, Julie Bossuyt, Ju Chen, Donald M Bers
Exchange proteins directly activated by cAMP (Epac1 and Epac2) have been recently recognized as key players in β-adrenergic-dependent cardiac arrhythmias. Whereas Epac1 overexpression can lead to cardiac hypertrophy and Epac2 activation can be arrhythmogenic, it is unknown whether distinct subcellular distribution of Epac1 vs. Epac2 contributes to differential functional effects. Here, we characterized and used a novel fluorescent cAMP derivate Epac ligand 8-[Pharos-575]-2'-O-methyladenosine-3',5'-cyclic monophosphate (Φ-O-Me-cAMP) in mice lacking either one or both isoforms (Epac1-KO, Epac2-KO, or double knockout, DKO) to assess isoform localization and function...
March 31, 2015: Proceedings of the National Academy of Sciences of the United States of America
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"