Read by QxMD icon Read


Timothy L Mullett, Neil Stewart
We use computational modeling to examine the ability of evidence accumulation models to produce the reaction time (RT) distributions and attentional biases found in behavioral and eye-tracking research. We focus on simulating RTs and attention in binary choice with particular emphasis on whether different models can predict the late onset bias (LOB), commonly found in eye movements during choice (sometimes called the gaze cascade). The first finding is that this bias is predicted by models even when attention is entirely random and independent of the choice process...
October 2016: Decision (Washington)
Daibiao Xiao, Ming Yue, Hexiu Su, Ping Ren, Jue Jiang, Feng Li, Yufeng Hu, Haining Du, Hudan Liu, Guoliang Qing
MYCN amplification in human cancers predicts poor prognosis and resistance to therapy. However, pharmacological strategies that directly target N-Myc, the protein encoded by MYCN, remain elusive. Here, we identify a molecular mechanism responsible for reciprocal activation between Polo-like kinase-1 (PLK1) and N-Myc. PLK1 specifically binds to the SCF(Fbw7) ubiquitin ligase, phosphorylates it, and promotes its autopolyubiquitination and proteasomal degradation, counteracting Fbw7-mediated degradation of N-Myc and additional substrates, including cyclin E and Mcl1...
October 4, 2016: Molecular Cell
Arif Ul Maula Khan, Ralf Mikut, Markus Reischl
The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation...
2016: PloS One
Joshua G A Cashaback, Heather R McGregor, Henry C H Pun, Gavin Buckingham, Paul L Gribble
The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? Here we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution...
October 19, 2016: Journal of Neurophysiology
Bryan E Essien, Sinju Sundaresan, Ramon Ocadiz-Ruiz, Aaron Chavis, Amy C Tsao, Arthur J Tessier, Michael M Hayes, Amanda Photenhauer, Milena Saqui-Salces, Anthony J Kang, Yatrik M Shah, Balázs Györffy, Juanita L Merchant
In colorectal cancer (CRC), APC-mediated induction of unregulated cell growth involves post-translational mechanisms that prevent proteasomal degradation of proto-oncogene β-catenin (CTNNB1) and its eventual translocation to the nucleus. However, about 10 percent of colorectal tumors also exhibit increased CTNNB1 mRNA. Here we show in CRC that increased expression of ZNF148, the gene coding for transcription factor ZBP-89, correlated with reduced patient survival. Tissue arrays showed that ZBP-89 protein was overexpressed in the early stages of CRC...
October 10, 2016: Cancer Research
Douglas McLelland, Rufin VanRullen
Several theories have been advanced to explain how cross-frequency coupling, the interaction of neuronal oscillations at different frequencies, could enable item multiplexing in neural systems. The communication-through-coherence theory proposes that phase-matching of gamma oscillations between areas enables selective processing of a single item at a time, and a later refinement of the theory includes a theta-frequency oscillation that provides a periodic reset of the system. Alternatively, the theta-gamma neural code theory proposes that a sequence of items is processed, one per gamma cycle, and that this sequence is repeated or updated across theta cycles...
October 2016: PLoS Computational Biology
Cătălin Buiu, Mihai V Putz, Speranta Avram
The dependency between the primary structure of HIV envelope glycoproteins (ENV) and the neutralization data for given antibodies is very complicated and depends on a large number of factors, such as the binding affinity of a given antibody for a given ENV protein, and the intrinsic infection kinetics of the viral strain. This paper presents a first approach to learning these dependencies using an artificial feedforward neural network which is trained to learn from experimental data. The results presented here demonstrate that the trained neural network is able to generalize on new viral strains and to predict reliable values of neutralizing activities of given antibodies against HIV-1...
October 11, 2016: International Journal of Molecular Sciences
Yasunobu Murata, Matthew T Colonnese
Spontaneous retinal waves are critical for the development of receptive fields in visual thalamus (LGN) and cortex (VC). Despite a detailed understanding of the circuit specializations in retina that generate waves, whether central circuit specializations also exist to control their propagation through visual pathways of the brain is unknown. Here we identify a developmentally transient, corticothalamic amplification of retinal drive to thalamus as a mechanism for retinal wave transmission in the infant rat brain...
October 11, 2016: ELife
Katharine A Shapcott, Joscha T Schmiedt, Richard C Saunders, Alexander Maier, David A Leopold, Michael C Schmid
A fundamental property of brain function is that the spiking activity of cortical neurons is variable and that some of this variability is correlated between neurons. Correlated activity not due to the stimulus arises from shared input but the neuronal circuit mechanisms that result in these noise correlations are not fully understood. Here we tested in the visual system if correlated variability in mid-level area V4 of visual cortex is altered following extensive lesions of primary visual cortex (V1). To this end we recorded longitudinally the neuronal correlations in area V4 of two behaving macaque monkeys before and after a V1 lesion while the monkeys fixated a grey screen...
October 10, 2016: Scientific Reports
Tihana Jovanic, Casey Martin Schneider-Mizell, Mei Shao, Jean-Baptiste Masson, Gennady Denisov, Richard Doty Fetter, Brett Daren Mensh, James William Truman, Albert Cardona, Marta Zlatic
Even a simple sensory stimulus can elicit distinct innate behaviors and sequences. During sensorimotor decisions, competitive interactions among neurons that promote distinct behaviors must ensure the selection and maintenance of one behavior, while suppressing others. The circuit implementation of these competitive interactions is still an open question. By combining comprehensive electron microscopy reconstruction of inhibitory interneuron networks, modeling, electrophysiology, and behavioral studies, we determined the circuit mechanisms that contribute to the Drosophila larval sensorimotor decision to startle, explore, or perform a sequence of the two in response to a mechanosensory stimulus...
October 20, 2016: Cell
M Hallett
Functional neurologic disorders are largely genuine and represent conversion disorders, where the dysfunction is unconscious, but there are some that are factitious, where the abnormality is feigned and conscious. Malingering, which can have the same manifestations, is similarly feigned, but not considered a genuine disease. There are no good methods for differentiating these three entities at the present time. Physiologic studies of functional weakness and sensory loss reveal normal functioning of primary motor and sensory cortex, but abnormalities of premotor cortex and association cortices...
2017: Handbook of Clinical Neurology
Jaime Eugenín León, María José Olivares, Sebastián Beltrán-Castillo
Astrocytes perform various homeostatic functions in the nervous system beyond that of a supportive or metabolic role for neurons. A growing body of evidence indicates that astrocytes are crucial for central respiratory chemoreception. This review presents a classical overview of respiratory central chemoreception and the new evidence for astrocytes as brainstem sensors in the respiratory response to hypercapnia. We review properties of astrocytes for chemosensory function and for modulation of the respiratory network...
2016: Advances in Experimental Medicine and Biology
Shahin Nasr, Herminia D Rosas
: The caudate nucleus is a part of the visual corticostriatal loop (VCSL), receiving input from different visual areas and projecting back to the same cortical areas via globus pallidus, substantia nigra, and thalamus. Despite perceptual and navigation impairments in patients with VCSL disruption due to caudate atrophy (e.g., Huntington's disease, HD), the relevance of the caudate nucleus and VCSL on cortical visual processing is not fully understood. In a series of fMRI experiments, we found that the caudate showed a stronger functional connection to parahippocampal place area (PPA) compared with adjacent regions (e...
October 5, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Florian Monjo, Nicolas Forestier
Muscle fatigue modifies the gain between motor command magnitude and the mechanical muscular response. In other words, post-fatigue, central drives to the muscles must increase to maintain a particular submaximum mechanical output. In this study, we tested the hypothesis that this modified gain can be predicted by the central nervous system (CNS) during discrete ballistic movements. In two separate experiments, subjects were required to perform shoulder flexions in standing and sitting positions at submaximum target peak accelerations...
September 30, 2016: Neuroscience
Elisa Albini, Verdiana Rosini, Marco Gargaro, Giada Mondanelli, Maria L Belladonna, Maria Teresa Pallotta, Claudia Volpi, Francesca Fallarino, Antonio Macchiarulo, Cinzia Antognelli, Roberta Bianchi, Carmine Vacca, Paolo Puccetti, Ursula Grohmann, Ciriana Orabona
The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the initial, rate-limiting step in tryptophan (Trp) degradation, resulting in tryptophan starvation and the production of immunoregulatory kynurenines. IDO1's catalytic function has long been considered as the one mechanism responsible for IDO1-dependent immune suppression by dendritic cells (DCs), which are master regulators of the balance between immunity and tolerance. However, IDO1 also harbours immunoreceptor tyrosine-based inhibitory motifs, (ITIM1 and ITIM2), that, once phosphorylated, bind protein tyrosine phosphatases, (SHP-1 and SHP-2), and thus trigger an immunoregulatory signalling in DCs...
September 30, 2016: Journal of Cellular and Molecular Medicine
Akikazu Kamiyama, Kazuhisa Fujita, Yoshiki Kashimori
Visual recognition involves bidirectional information flow, which consists of bottom-up information coding from retina and top-down information coding from higher visual areas. Recent studies have demonstrated the involvement of early visual areas such as primary visual area (V1) in recognition and memory formation. V1 neurons are not passive transformers of sensory inputs but work as adaptive processor, changing their function according to behavioral context. Top-down signals affect tuning property of V1 neurons and contribute to the gating of sensory information relevant to behavior...
September 28, 2016: Bio Systems
Ted J Warren, Matthew J Van Hook, Daniel Tranchina, Wallace B Thoreson
UNLABELLED: Inhibitory feedback from horizontal cells (HCs) to cones generates center-surround receptive fields and color opponency in the retina. Mechanisms of HC feedback remain unsettled, but one hypothesis proposes that an ephaptic mechanism may alter the extracellular electrical field surrounding photoreceptor synaptic terminals, thereby altering Ca(2+) channel activity and photoreceptor output. An ephaptic voltage change produced by current flowing through open channels in the HC membrane should occur with no delay...
September 28, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Adina E Draghici, J Andrew Taylor
Cardiovascular variabilities were recognized over 250 years ago, but only in the past 20 years has their apparent utility come to be appreciated. Technological advancement has allowed precise measurement and quantification of short-term cardiovascular fluctuations; however, our understanding of the integrated mechanisms which underlie these oscillations is inadequate for their widespread application. Both autonomic branches, the parasympathetic and sympathetic nervous system, are key determinants of the magnitude of these spontaneous cardiovascular fluctuations...
September 28, 2016: Journal of Physiological Anthropology
Rinaldo David D'Souza, Andrew Max Meier, Pawan Bista, Quanxin Wang, Andreas Burkhalter
Diverse features of sensory stimuli are selectively processed in distinct brain areas. The relative recruitment of inhibitory and excitatory neurons within an area controls the gain of neurons for appropriate stimulus coding. We examined how such a balance of inhibition and excitation is differentially recruited across multiple levels of a cortical hierarchy by mapping the locations and strengths of synaptic inputs to pyramidal and parvalbumin (PV)-expressing neurons in feedforward and feedback pathways interconnecting primary (V1) and two higher visual areas...
September 26, 2016: ELife
Frank M Drop, Daan M Pool, Marinus M van Paassen, Max Mulder, Heinrich H Bulthoff
Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system identification methods have difficulty in identifying whether, and (if so) how, the HC applies a feedforward strategy. In this paper, an identification procedure is presented that aims at an objective model selection for identifying the human feedforward response, using linear time-invariant autoregressive with exogenous input models...
September 19, 2016: IEEE Transactions on Cybernetics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"