Read by QxMD icon Read

Adenosine A2B receptor

Wilfried Dinh, Barbara Albrecht-Küpper, Mihai Gheorghiade, Adriaan A Voors, Michael van der Laan, Hani N Sabbah
Adenosine exerts a variety of physiological effects by binding to cell surface G-protein-coupled receptor subtypes, namely, A1, A2a, A2b, and A3. The central physiological role of adenosine is to preclude tissue injury and promote repair in response to stress. In the heart, adenosine acts as a cytoprotective modulator, linking cardiac function to metabolic demand predominantly via activation of adenosine A1 receptors (A1Rs), which leads to inhibition of adenylate cyclase activity, modulation of protein kinase C, and opening of ATP-sensitive potassium channels...
October 22, 2016: Handbook of Experimental Pharmacology
Hendrik Busse, Diane Bitzinger, Klaus Höcherl, Timo Seyfried, Michael Gruber, Bernhard M Graf, York A Zausig
INTRODUCTION: Mechanical and morphological ischemia and reperfusion (I/R) injury is reduced in septic hearts. The mechanism behind this "cardioprotection" is less well understood. As adenosine receptors play a major role for cardioprotection in non-septic hearts, we investigated the influence of adenosine receptors in a model of I/R in septic hearts. METHODS: SHAM operation or cecal ligation and puncture (CLP) was performed in adult male Wistar rats (n = 60)...
October 18, 2016: Cardiovascular Drugs and Therapy
Cesar Sepúlveda, Iván Palomo, Eduardo Fuentes
The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells...
October 8, 2016: Life Sciences
Christina Mølck, James Ryall, Laura M Failla, Janine L Coates, Jean-Marc Pascussi, Joan K Heath, Gregory Stewart, Frédéric Hollande
PURPOSE: Adenosine is a multifaceted regulator of tumor progression. It modulates immune cell activity as well as acting directly on tumor cells. The A2b adenosine receptor (A2b-AR) is thought to be an important mediator of these effects. In this study we sought to analyze the contribution of the A2b-AR to the behavior of colorectal cancer cells. PRINCIPAL RESULTS: The A2b-AR antagonist PSB-603 changed cellular redox state without affecting cellular viability. Quantification of cellular bioenergetics demonstrated that PSB-603 increased basal oxygen consumption rates, indicative of enhanced mitochondrial oxidative phosphorylation...
September 28, 2016: Cancer Letters
Matthias Klein, Tobias Bopp
T regulatory (Treg) cells are one of the key players in the immune tolerance network, and a plethora of manuscripts have described their development and function in the course of the last two decades. Nevertheless, it is still a matter of debate as to which mechanisms and agents are employed by Treg cells, providing the basis of their suppressive potency. One of the important candidates is cyclic AMP (cAMP), which is long known as a potent suppressor at least of T cell activation and function. While this suppressive function by itself is widely accepted, the source and the mechanism of action of cAMP are less clear, and a multitude of seemingly contradictory data allow for, in principle, two different scenarios of cAMP-mediated suppression...
2016: Frontiers in Immunology
Ying Sun, Pingbo Huang
Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR's functions, including certain seemingly paradoxical functions of the receptor...
2016: Frontiers in Chemistry
Claudia Sorrentino, Lucio Miele, Amalia Porta, Aldo Pinto, Silvana Morello
The A2B receptor (A2BR) can mediate adenosine-induced tumor proliferation, immunosuppression and angiogenesis. Targeting the A2BR has proved to be therapeutically effective in some murine tumor models, but the mechanisms of these effects are still incompletely understood. Here, we report that pharmacologic inhibition of A2BR with PSB1115, which inhibits tumor growth, decreased the number of fibroblast activation protein (FAP)-expressing cells in tumors in a mouse model of melanoma. This effect was associated with reduced expression of fibroblast growth factor (FGF)-2...
August 31, 2016: Oncotarget
Alessandra Bortoluzzi, Fabrizio Vincenzi, Marcello Govoni, Melissa Padovan, Annalisa Ravani, Pier Andrea Borea, Katia Varani
BACKGROUND: Adenosine is a purine nucleoside implicated in the regulation of the innate and adaptive immune systems, acting through its interaction with four cell surface receptors: A1, A2A, A2B, and A3. There is intense interest in understanding how adenosine functions in health and during disease, but surprisingly little is known about the actual role of adenosine-mediated mechanisms in systemic lupus erythematosus (SLE). With this background, the aim of the present study was to test the hypothesis that dysregulation of A1, A2A, A2B, and A3 adenosine receptors (ARs) in lymphocytes of patients with SLE may be involved in the pathogenesis of the disease and to examine the correlations between the status of the ARs and the clinical parameters of SLE...
2016: Arthritis Research & Therapy
Joachim C Burbiel, Wadih Ghattas, Petra Küppers, Meryem Köse, Svenja Lacher, Anna-Maria Herzner, Rajan Subramanian Kombu, Raghuram Rao Akkinepally, Jörg Hockemeyer, Christa E Müller
2-Amino[1,2,4]triazolo[1,5-c]quinazolines were identified as potent adenosine receptor (AR) antagonists. Synthetic strategies were devised to gain access to a broad range of derivatives including novel polyheterocyclic compounds. Potent and selective A3 AR antagonists were discovered, including 3,5-diphenyl[1,2,4]triazolo[4,3-c]quinazoline (17, Ki human A3 AR 1.16 nm) and 5'-phenyl-1,2-dihydro-3'H-spiro[indole-3,2'-[1,2,4]triazolo[1,5-c]quinazolin]-2-one (20, Ki human A3 AR 6.94 nm). In addition, multitarget antagonists were obtained, such as the dual A1 /A3 antagonist 2,5-diphenyl[1,2,4]triazolo[1,5-c]quinazoline (13 b, Ki human A1 AR 51...
August 17, 2016: ChemMedChem
Elizabeth A Vecchio, Chung Hui Chuo, Jo-Anne Baltos, Leigh Ford, Peter J Scammells, Bing H Wang, Arthur Christopoulos, Paul J White, Lauren T May
We have recently described the rationally-designed adenosine receptor agonist, 4-(5-amino-4-benzoyl-3-(3-(trifluoromethyl)phenyl)thiophen-2-yl)-N-(6-(9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxylmethyl)tetrahydro-furan-2-yl)-9H-purin-6-ylamino)hexyl)benzamide (VCP746), a hybrid molecule consisting of an adenosine moiety linked to an adenosine A1 receptor (A1AR) allosteric modulator moiety. At the A1AR, VCP746 mediated cardioprotection in the absence of haemodynamic side effects such as bradycardia. The current study has now identified VCP746 as an important pharmacological tool for the adenosine A2B receptor (A2BAR)...
October 1, 2016: Biochemical Pharmacology
Rosa M Andrés, M Carmen Terencio, Jorge Arasa, Miguel Payá, Francisca Valcuende-Cavero, Pedro Navalón, M Carmen Montesinos
Adenosine is a potent regulator of inflammation and immunity, but the role of adenosine receptors in keratinocytes remains controversial. We determined that in addition to A2B receptors, human epidermal keratinocytes also express A2A receptors, although to a lower extent. Through the use of selective adenosine receptor agonists and antagonists we demonstrated that physiological concentrations of adenosine activate A2B receptors in normal human keratinocytes, inducing cell cycle arrest through the increase of intracellular calcium but not through cAMP signaling...
August 3, 2016: Journal of Investigative Dermatology
Patrick F Wilkinson, Francis X Farrell, Diane Morel, William Law, Suzanne Murphy
Interstitial renal fibrosis is a major pathophysiological manifestation of patients diagnosed with Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN) and other inflammatory diseases. Adenosine signaling is an innate autocrine and paracrine cellular signaling pathway involving several key mediators that are elevated in the blood and kidneys of patients with DN. In these studies, we hypothesized that extracellular adenosine signals through one or more functional adenosine GPCRs on renal fibroblasts which increases profibrotic and proinflammatory mediators by inducing an activated fibroblast phenotype...
July 2016: Annals of Clinical and Laboratory Science
Ranju Bansal, Gulshan Kumar, Suman Rohilla, Karl-Norbert Klotz, Sonja Kachler, Louise C Young, Alan L Harvey
Preclinical Research A new series of 1,3-dimethylxanthine derivatives bearing 8-(2-nitroaryl) residue was synthesized and evaluated for affinity for recombinant human adenosine receptors subtypes. Nitrate esters of 7-substituted-1,3-dimethyl-8-phenylxanthines were also synthesized and tested. Introducing a nitro substituent at the 2-position of the 8-substituted phenyl ring resulted in generally low affinity for adenosine receptors (ARs), selectivity toward the A2A subtype was enhanced in some of the compounds...
August 2016: Drug Development Research
Xia Hu, Morayo G Adebiyi, Jialie Luo, Kaiqi Sun, Thanh-Thuy T Le, Yujin Zhang, Hongyu Wu, Shushan Zhao, Harry Karmouty-Quintana, Hong Liu, Aji Huang, Yuan Edward Wen, Oleg L Zaika, Mykola Mamenko, Oleh M Pochynyuk, Rodney E Kellems, Holger K Eltzschig, Michael R Blackburn, Edgar T Walters, Dong Huang, Hongzhen Hu, Yang Xia
The molecular mechanisms of chronic pain are poorly understood and effective mechanism-based treatments are lacking. Here, we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected chronic mechanical and thermal hypersensitivity due to sustained elevated circulating adenosine. Extending from Ada(-/-) mice, we further discovered that prolonged elevated adenosine contributed to chronic pain behaviors in two additional independent animal models: sickle cell disease mice, a model of severe pain with limited treatment, and complete Freund's adjuvant paw-injected mice, a well-accepted inflammatory model of chronic pain...
June 28, 2016: Cell Reports
Bunyen Teng, Stephen L Tilley, Catherine Ledent, S Jamal Mustafa
Bolus injections of adenosine and the A2A adenosine receptor (AR) selective agonist (regadenoson) are used clinically as a substitute for a stress test in people who cannot exercise. Using isolated tissue preparations, our lab has shown that coronary flow and cardiac effects of adenosine are mostly regulated by the AR subtypes A1, A2A, and A2B In this study, we used ultrasound imaging to measure the in vivo effects of adenosine on coronary blood flow (left coronary artery) and cardiac function in anesthetized wild-type, A1 knockout (KO), A2AKO, A2BKO, A3KO, A1, and A3 double KO (A1/3 DKO) and A2A and A2B double KO (A2A/2B DKO) mice in real time...
June 2016: Physiological Reports
Carmen Corciulo, Tuere Wilder, Bruce N Cronstein
Bone homeostasis is a finely regulated mechanism involving different molecular pathways including adenosine signaling. The aim of this study is to determine the bone phenotype of adenosine A2B receptor knockout (A2BRKO) mice and to measure their ability to form new bone. Moreover, we analyzed the functionality of osteoclasts and osteoblasts from A2BRKO mice. Microcomputed tomography (μCT) analysis revealed a decrease of bone substance, bone mineral density, and trabecular number in A2BRKO mice compared to the WT mice at the same age...
September 2016: Purinergic Signalling
Barbara Cosimelli, Giovanni Greco, Sonia Laneri, Ettore Novellino, Antonia Sacchi, Maria Letizia Trincavelli, Chiara Giacomelli, Sabrina Taliani, Federico Da Settimo, Claudia Martini
Three 4-amino-6-alkyloxy-2-alkylthiopyrimidine derivatives (4-6) were investigated as potential non-nucleoside agonists at human adenosine receptors (ARs). When tested in competition binding experiments, these compounds exhibited low micromolar affinity (Ki values comprised between 1.2 and 1.9 μM) for the A1 AR and no appreciable affinity for the A2A and A3 ARs. Evaluation of their efficacy profiles by measurement of intracellular cAMP levels revealed that 4 and 5 behave as non-nucleoside agonists of the A1 AR with EC50 values of 0...
June 10, 2016: Chemical Biology & Drug Design
Michael J Watson, Shernita L Lee, Abigail J Marklew, Rodney C Gilmore, Martina Gentzsch, Maria F Sassano, Michael A Gray, Robert Tarran
CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR...
2016: Scientific Reports
Aryadi Arsyad, Geoffrey P Dobson
BACKGROUND: An area of ongoing controversy is the role adenosine to regulate vascular tone in conduit vessels that regulate compliance, and the role of nitric oxide (NO), potassium channels and receptor subtypes involved. The aim of our study was to investigate adenosine relaxation in rat thoracic aortic rings, and the effect of inhibitors of NO, prostanoids, Kv, KATP channels, and A2a and A2b receptors. METHODS: Aortic rings were freshly harvested from adult male Sprague Dawley rats and equilibrated in an organ bath containing oxygenated, modified Krebs-Henseleit solution, 11 mM glucose, pH 7...
2016: BMC Pharmacology & Toxicology
Bertrand Allard, Paul A Beavis, Phillip K Darcy, John Stagg
Multiple immunosuppressive mechanisms impede anti-tumor immunity. Among them, the accumulation of extracellular adenosine is a potent and widespread strategy exploited by tumors to escape immunosurveillance through the activation of purinergic receptors. In the immune system, engagement of A2a and A2b adenosine receptors is a critical regulatory mechanism that protects tissues against excessive immune reactions. In tumors, this pathway is hijacked and hinders anti-tumor immunity, promoting cancer progression...
August 2016: Current Opinion in Pharmacology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"