keyword
MENU ▼
Read by QxMD icon Read
search

human spaceflight

keyword
https://www.readbyqxmd.com/read/28324673/a-framework-to-guide-the-assessment-of-human-machine-systems
#1
Kimberly Stowers, James Oglesby, Shirley Sonesh, Kevin Leyva, Chelsea Iwig, Eduardo Salas
OBJECTIVE: We have developed a framework for guiding measurement in human-machine systems. BACKGROUND: The assessment of safety and performance in human-machine systems often relies on direct measurement, such as tracking reaction time and accidents. However, safety and performance emerge from the combination of several variables. The assessment of precursors to safety and performance are thus an important part of predicting and improving outcomes in human-machine systems...
March 2017: Human Factors
https://www.readbyqxmd.com/read/28279266/parallels-between-astronauts-and-terrestrial-patients-taking-physiotherapy-rehabilitation-to-infinity-and-beyond
#2
Julie Hides, Gunda Lambrecht, Gita Ramdharry, Rebecca Cusack, Jacob Bloomberg, Maria Stokes
Exposure to the microgravity environment induces physiological changes in the cardiovascular, musculoskeletal and sensorimotor systems in healthy astronauts. As space agencies prepare for extended duration missions, it is difficult to predict the extent of the effects that prolonged exposure to microgravity will have on astronauts. Prolonged bed rest is a model used by space agencies to simulate the effects of spaceflight on the human body, and bed rest studies have provided some insights into the effects of immobilisation and inactivity...
January 2017: Musculoskelet Sci Pract
https://www.readbyqxmd.com/read/28271409/the-effect-of-spaceflight-and-microgravity-on-the-human-brain
#3
Angelique Van Ombergen, Athena Demertzi, Elena Tomilovskaya, Ben Jeurissen, Jan Sijbers, Inessa B Kozlovskaya, Paul M Parizel, Paul H Van de Heyning, Stefan Sunaert, Steven Laureys, Floris L Wuyts
Microgravity, confinement, isolation, and immobilization are just some of the features astronauts have to cope with during space missions. Consequently, long-duration space travel can have detrimental effects on human physiology. Although research has focused on the cardiovascular and musculoskeletal system in particular, the exact impact of spaceflight on the human central nervous system remains to be determined. Previous studies have reported psychological problems, cephalic fluid shifts, neurovestibular problems, and cognitive alterations, but there is paucity in the knowledge of the underlying neural substrates...
March 7, 2017: Journal of Neurology
https://www.readbyqxmd.com/read/28248986/cellular-responses-and-gene-expression-profile-changes-due-to-bleomycin-induced-dna-damage-in-human-fibroblasts-in-space
#4
Tao Lu, Ye Zhang, Yared Kidane, Alan Feiveson, Louis Stodieck, Fathi Karouia, Govindarajan Ramesh, Larry Rohde, Honglu Wu
Living organisms in space are constantly exposed to radiation, toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage is essential for assessing the radiation risk for astronauts and the mutation rate in microorganisms. In a study conducted on the International Space Station, confluent human fibroblasts in culture were treated with bleomycin for three hours in the true microgravity environment...
2017: PloS One
https://www.readbyqxmd.com/read/28173930/methodology-for-astronaut-reconditioning-research
#5
David J Beard, Jonathan A Cook
Space medicine offers some unique challenges, especially in terms of research methodology. A specific challenge for astronaut reconditioning involves identification of what aspects of terrestrial research methodology hold and which require modification. This paper reviews this area and presents appropriate solutions where possible. It is concluded that spaceflight rehabilitation research should remain question/problem driven and is broadly similar to the terrestrial equivalent on small populations, such as rare diseases and various sports...
January 2017: Musculoskelet Sci Pract
https://www.readbyqxmd.com/read/28173928/the-role-of-physiotherapy-in-the-european-space-agency-strategy-for-preparation-and-reconditioning-of-astronauts-before-and-after-long-duration-space-flight
#6
Gunda Lambrecht, Nora Petersen, Guillaume Weerts, Casey Pruett, Simon Evetts, Maria Stokes, Julie Hides
Spaceflight and exposure to microgravity have wide-ranging effects on many systems of the human body. At the European Space Agency (ESA), a physiotherapist plays a key role in the multidisciplinary ESA team responsible for astronaut health, with a focus on the neuro-musculoskeletal system. In conjunction with a sports scientist, the physiotherapist prepares the astronaut for spaceflight, monitors their exercise performance whilst on the International Space Station (ISS), and reconditions the astronaut when they return to Earth...
January 2017: Musculoskelet Sci Pract
https://www.readbyqxmd.com/read/28092926/effect-of-gravity-and-microgravity-on-intracranial-pressure
#7
Justin S Lawley, Lonnie G Petersen, Erin J Howden, Satyam Sarma, William K Cornwell, Rong Zhang, Louis A Whitworth, Michael A Williams, Benjamin D Levine
KEY POINTS: Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure on Earth. Gravity has a profound effect on fluid distribution and pressure within the human circulation. In contrast to prevailing theory, we observed that microgravity reduces central venous and intracranial pressure. This being said, intracranial pressure is not reduced to the levels observed in the 90 deg seated upright posture on Earth...
March 15, 2017: Journal of Physiology
https://www.readbyqxmd.com/read/28088539/the-dna-damage-response-of-c-elegans-affected-by-gravity-sensing-and-radiosensitivity-during-the-shenzhou-8-spaceflight
#8
Ying Gao, Dan Xu, Lei Zhao, Yeqing Sun
Space radiation and microgravity are recognized as primary and inevitable risk factors for humans traveling in space, but the reports regarding their synergistic effects remain inconclusive and vary across studies due to differences in the environmental conditions and intrinsic biological sensitivity. Thus, we studied the synergistic effects on transcriptional changes in the global genome and DNA damage response (DDR) by using dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity when exposure to spaceflight condition (SF) and space radiation (SR)...
January 7, 2017: Mutation Research
https://www.readbyqxmd.com/read/28087888/simulated-microgravity-decreases-circulating-iron-in-rats-role-of-inflammation-induced-hepcidin-upregulation
#9
Thibault Cavey, Nicolas Pierre, Kévin Nay, Coralie Allain, Martine Ropert, Olivier Loréal, Frédéric Derbré
During spaceflight, humans exposed to microgravity exhibit an increase of iron storage and a reduction of circulating iron. Such perturbations could promote oxidative stress and anemia in astronauts. The mechanism by which microgravity modulates iron metabolism is still unknown. Herein, we hypothesized that microgravity up-regulates hepcidin, a hormone produced by the liver that is the main controller of iron homeostasis. To test this hypothesis, rats were submitted to hindlimb unloading (HU), the reference model to mimic the effects of microgravity in rodents...
January 13, 2017: Experimental Physiology
https://www.readbyqxmd.com/read/28076365/gene-expression-profiling-in-slow-type-calf-soleus-muscle-of-30-days-space-flown-mice
#10
Guido Gambara, Michele Salanova, Stefano Ciciliot, Sandra Furlan, Martina Gutsmann, Gudrun Schiffl, Ute Ungethuem, Pompeo Volpe, Hanns-Christian Gunga, Dieter Blottner
Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus)...
2017: PloS One
https://www.readbyqxmd.com/read/28050606/long-term-exposure-to-space-s-microgravity-alters-the-time-structure-of-heart-rate-variability-of-astronauts
#11
Kuniaki Otsuka, Germaine Cornelissen, Satoshi Furukawa, Yutaka Kubo, Mitsutoshi Hayashi, Koichi Shibata, Koh Mizuno, Tatsuya Aiba, Hiroshi Ohshima, Chiaki Mukai
BACKGROUND: Spaceflight alters human cardiovascular dynamics. The less negative slope of the fractal scaling of heart rate variability (HRV) of astronauts exposed long-term to microgravity reflects cardiovascular deconditioning. We here focus on specific frequency regions of HRV. METHODS: Ten healthy astronauts (8 men, 49.1 ± 4.2 years) provided five 24-hour electrocardiographic (ECG) records: before launch, 20.8 ± 2.9 (ISS01), 72.5 ± 3.9 (ISS02) and 152.8 ± 16...
December 2016: Heliyon
https://www.readbyqxmd.com/read/28000175/adaptation-to-microgravity-deconditioning-and-countermeasures
#12
REVIEW
Kunihiko Tanaka, Naoki Nishimura, Yasuaki Kawai
Humans are generally in standing or sitting positions on Earth during the day. The musculoskeletal system supports these positions and also allows motion. Gravity acting in the longitudinal direction of the body generates a hydrostatic pressure difference and induces footward fluid shift. The vestibular system senses the gravity of the body and reflexively controls the organs. During spaceflight or exposure to microgravity, the load on the musculoskeletal system and hydrostatic pressure difference is diminished...
March 2017: Journal of Physiological Sciences: JPS
https://www.readbyqxmd.com/read/27932674/metabolic-adaptations-in-skeletal-muscle-after-84-days-of-bed-rest-with-and-without-concurrent-flywheel-resistance-exercise
#13
José M Irimia, Mario Guerrero, Paula Rodriguez-Miguelez, Joan A Cadefau, Per A Tesch, Roser Cussó, Rodrigo Fernandez-Gonzalo
As metabolic changes in human skeletal muscle after long-term (simulated) spaceflight are not well understood, this study examined the effects of long-term microgravity, with and without concurrent resistance exercise, on skeletal muscle oxidative and glycolytic capacity. Twenty-one men were subjected to 84 days head-down tilt bed rest with (BRE; n = 9) or without (BR; n = 12) concurrent flywheel resistance exercise. Activity and gene expression of glycogen synthase, glycogen phosphorylase (GPh), hexokinase, phosphofructokinase-1 (PFK-1), and citrate synthase (CS), as well as gene expression of succinate dehydrogenase (SDH), vascular endothelial growth factor (VEFG), peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1α), and myostatin, were analyzed in samples from m...
January 1, 2017: Journal of Applied Physiology
https://www.readbyqxmd.com/read/27817217/spaceflight-induced-changes-in-the-human-proteome
#14
Alexey S Kononikhin, Natalia L Starodubtseva, Lyudmila Kh Pastushkova, Daria N Kashirina, Kristina Yu Fedorchenko, Alexander G Brhozovsky, Igor A Popov, Irina M Larina, Evgeny N Nikolaev
Spaceflight is one of the most extreme conditions encountered by humans: Individuals are exposed to radiation, microgravity, hypodynamia, and will experience isolation. A better understanding of the molecular processes induced by these factors may allow us to develop personalized countermeasures to minimize risks to astronauts. Areas covered: This review is a summary of literature searches from PubMed, NASA, Roskosmos and the authors' research experiences and opinions. The review covers the available proteomic data on the effects of spaceflight factors on the human body, including both real space missions and ground-based model experiments...
January 2017: Expert Review of Proteomics
https://www.readbyqxmd.com/read/27662782/review-and-analysis-of-over-40-years-of-space-plant-growth-systems
#15
REVIEW
P Zabel, M Bamsey, D Schubert, M Tajmar
The cultivation of higher plants occupies an essential role within bio-regenerative life support systems. It contributes to all major functional aspects by closing the different loops in a habitat like food production, CO2 reduction, O2 production, waste recycling and water management. Fresh crops are also expected to have a positive impact on crew psychological health. Plant material was first launched into orbit on unmanned vehicles as early as the 1960s. Since then, more than a dozen different plant cultivation experiments have been flown on crewed vehicles beginning with the launch of Oasis 1, in 1971...
August 2016: Life Sciences in Space Research
https://www.readbyqxmd.com/read/27634181/long-term-exposure-to-microgravity-impairs-vestibulo-cardiovascular-reflex
#16
Hironobu Morita, Chikara Abe, Kunihiko Tanaka
The vestibular system is known to have an important role in controlling blood pressure upon posture transition (vestibulo-cardiovascular reflex, VCR). However, under a different gravitational environment, the sensitivity of the vestibular system may be altered. Thus, the VCR may become less sensitive after spaceflight because of orthostatic intolerance potentially induced by long-term exposure to microgravity. To test this hypothesis in humans, we investigated the ability of the VCR to maintain blood pressure upon head-up tilt before and after a 4-6 months stay on the International Space Station...
2016: Scientific Reports
https://www.readbyqxmd.com/read/27630185/microgravity-as-a-biological-tool-to-examine-host-pathogen-interactions-and-to-guide-development-of-therapeutics-and-preventatives-that-target-pathogenic-bacteria
#17
Ellen E Higginson, James E Galen, Myron M Levine, Sharon M Tennant
Space exploration programs have long been interested in the effects of spaceflight on biology. This research is important not only in its relevance to future deep space exploration, but also because it has allowed investigators to ask questions about how gravity impacts cell behavior here on Earth. In the 1980s, scientists designed and built the first rotating wall vessel, capable of mimicking the low shear environment found in space. This vessel has since been used to investigate growth of both microorganisms and human tissue cells in low shear modeled microgravity conditions...
November 2016: Pathogens and Disease
https://www.readbyqxmd.com/read/27607152/the-development-of-lighting-countermeasures-for-sleep-disruption-and-circadian-misalignment-during-spaceflight
#18
George C Brainard, Laura K Barger, Robert R Soler, John P Hanifin
PURPOSE OF REVIEW: The review addresses the development of a new solid-state lighting system for the International Space Station (ISS) that is intended to enhance the illumination of the working and living environment of astronauts and to improve sleep, circadian entrainment, and daytime alertness. RECENT FINDINGS: Spaceflight missions often expose astronauts and mission support ground crews to atypical sleep-wake cycles and work schedules. A recent, extensive study describes the sleep characteristics and use of sleep-promoting pharmaceuticals in astronauts before, during, and after spaceflight...
November 2016: Current Opinion in Pulmonary Medicine
https://www.readbyqxmd.com/read/27601982/increased-brain-activation-for-dual-tasking-with-70-days-head-down-bed-rest
#19
Peng Yuan, Vincent Koppelmans, Patricia A Reuter-Lorenz, Yiri E De Dios, Nichole E Gadd, Scott J Wood, Roy Riascos, Igor S Kofman, Jacob J Bloomberg, Ajitkumar P Mulavara, Rachael D Seidler
Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR...
2016: Frontiers in Systems Neuroscience
https://www.readbyqxmd.com/read/27446039/cultivation-of-staphylococcus-epidermidis-in-the-human-spaceflight-environment-leads-to-alterations-in-the-frequency-and-spectrum-of-spontaneous-rifampicin-resistance-mutations-in-the-rpob-gene
#20
Patricia Fajardo-Cavazos, Wayne L Nicholson
Bacteria of the genus Staphylococcus are persistent inhabitants of human spaceflight habitats and represent potential opportunistic pathogens. The effect of the human spaceflight environment on the growth and the frequency of mutations to antibiotic resistance in the model organism Staphylococcus epidermidis strain ATCC12228 was investigated. Six cultures of the test organism were cultivated in biological research in canisters-Petri dish fixation units for 122 h on orbit in the International Space Station (ISS) as part of the SpaceX-3 resupply mission...
2016: Frontiers in Microbiology
keyword
keyword
86006
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"