Read by QxMD icon Read

human spaceflight

Alexey S Kononikhin, Natalia L Starodubtseva, Lyudmila Kh Pastushkova, Daria N Kashirina, Kristina Yu Fedorchenko, Alexander G Brhozovsky, Igor A Popov, Irina M Larina, Evgeny N Nikolaev
Spaceflight is one of the most extreme conditions encountered by humans: Individuals are exposed to radiation, microgravity, hypodynamia, and will experience isolation. A better understanding of the molecular processes induced by these factors may allow us to develop personalized countermeasures to minimize risks to astronauts. Areas covered: This review is a summary of literature searches from PubMed, NASA, Roskosmos and the authors' research experiences and opinions. The review covers the available proteomic data on the effects of spaceflight factors on the human body, including both real space missions and ground-based model experiments...
November 21, 2016: Expert Review of Proteomics
P Zabel, M Bamsey, D Schubert, M Tajmar
The cultivation of higher plants occupies an essential role within bio-regenerative life support systems. It contributes to all major functional aspects by closing the different loops in a habitat like food production, CO2 reduction, O2 production, waste recycling and water management. Fresh crops are also expected to have a positive impact on crew psychological health. Plant material was first launched into orbit on unmanned vehicles as early as the 1960s. Since then, more than a dozen different plant cultivation experiments have been flown on crewed vehicles beginning with the launch of Oasis 1, in 1971...
August 2016: Life Sciences in Space Research
Hironobu Morita, Chikara Abe, Kunihiko Tanaka
The vestibular system is known to have an important role in controlling blood pressure upon posture transition (vestibulo-cardiovascular reflex, VCR). However, under a different gravitational environment, the sensitivity of the vestibular system may be altered. Thus, the VCR may become less sensitive after spaceflight because of orthostatic intolerance potentially induced by long-term exposure to microgravity. To test this hypothesis in humans, we investigated the ability of the VCR to maintain blood pressure upon head-up tilt before and after a 4-6 months stay on the International Space Station...
2016: Scientific Reports
Ellen E Higginson, James E Galen, Myron M Levine, Sharon M Tennant
Space exploration programs have long been interested in the effects of spaceflight on biology. This research is important not only in its relevance to future deep space exploration, but also because it has allowed investigators to ask questions about how gravity impacts cell behavior here on Earth. In the 1980s, scientists designed and built the first rotating wall vessel, capable of mimicking the low shear environment found in space. This vessel has since been used to investigate growth of both microorganisms and human tissue cells in low shear modeled microgravity conditions...
November 2016: Pathogens and Disease
George C Brainard, Laura K Barger, Robert R Soler, John P Hanifin
PURPOSE OF REVIEW: The review addresses the development of a new solid-state lighting system for the International Space Station (ISS) that is intended to enhance the illumination of the working and living environment of astronauts and to improve sleep, circadian entrainment, and daytime alertness. RECENT FINDINGS: Spaceflight missions often expose astronauts and mission support ground crews to atypical sleep-wake cycles and work schedules. A recent, extensive study describes the sleep characteristics and use of sleep-promoting pharmaceuticals in astronauts before, during, and after spaceflight...
November 2016: Current Opinion in Pulmonary Medicine
Peng Yuan, Vincent Koppelmans, Patricia A Reuter-Lorenz, Yiri E De Dios, Nichole E Gadd, Scott J Wood, Roy Riascos, Igor S Kofman, Jacob J Bloomberg, Ajitkumar P Mulavara, Rachael D Seidler
Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR...
2016: Frontiers in Systems Neuroscience
Patricia Fajardo-Cavazos, Wayne L Nicholson
Bacteria of the genus Staphylococcus are persistent inhabitants of human spaceflight habitats and represent potential opportunistic pathogens. The effect of the human spaceflight environment on the growth and the frequency of mutations to antibiotic resistance in the model organism Staphylococcus epidermidis strain ATCC12228 was investigated. Six cultures of the test organism were cultivated in biological research in canisters-Petri dish fixation units for 122 h on orbit in the International Space Station (ISS) as part of the SpaceX-3 resupply mission...
2016: Frontiers in Microbiology
Christine Moissl-Eichinger, Charles Cockell, Petra Rettberg
One of the biggest challenges of science is the determination of whether extraterrestrial life exists. Although potential habitable areas might be available for complex life, it is more likely that microbial life could exist in space. Many extremotolerant and extremophilic microbes have been found to be able to withstand numerous, combined environmental factors, such as high or low temperatures and pressures, high-salt conditions, high doses of radiation, desiccation or nutrient limitations. They may even survive the transit from one planet to another...
September 2016: FEMS Microbiology Reviews
Xianghan Wang, Jianxin Du, Demei Wang, Fan Zeng, Yukui Wei, Fuli Wang, Chengcheng Feng, Nuomin Li, Rongji Dai, Yulin Deng, Zhenzhen Quan, Hong Qing
During spaceflight, the negative effects of space microgravity on astronauts are becoming more and more prominent, and especially, of which on the nervous system is urgently to be solved. For this purpose tissue blocks and primary cells of nervous tissues obtained from glioma of patients were cultivated after culturing for about 7days, explanted tissues and cells were then randomly divided into two groups, one for static culture (control group, C), and the other for rotary processing for 1day, 3days, 5days, 7days and 14days (experiment group, E)...
August 3, 2016: Neuroscience Letters
Xi Xu, Pingping Li, Peng Zhang, Ming Chu, Hongju Liu, Xiaoping Chen, Qing Ge
Rhodiola rosea (R. rosea), a type of adaptogen, has been previously reported to exhibit immunostimulating activity in rodents and in human peripheral blood mononuclear cells (PBMCs) in vitro. To examine the effect of R. rosea on T cells under simulated microgravity, spaceflight analogs of human head‑down bed rest (HDBR) at ‑6˚ and murine hind limb unloading (HU) were used. A decrease in the levels of interferon‑γ (IFN‑γ) and interleukin‑17 (IL‑17) and an increase in regulatory T (Treg) cells were observed in the placebo group following HDBR...
July 2016: Molecular Medicine Reports
Qing Liu, Ren-Lai Zhou, Xin Zhao, Xiao-Ping Chen, Shan-Guang Chen
Recently, studies on the extent to which spaceflight affects the psychology of individuals has received attention. In order to reveal the mental challenges that humans face in space, we need practical viewpoints to integrate the psychological effects, behavior, performance and the environment itself for space exploration. The present review discusses the individual variables related to space psychology and manned spaceflight, in addition to their growing trends. These items include patterns of emotional changes in extreme environments and the approaches to evaluating emotions...
2016: Military Medical Research
Susan A Bloomfield, Daniel A Martinez, Ramon D Boudreaux, Anita V Mantri
The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions...
April 2016: Comprehensive Physiology
Christine E Hellweg, Luis F Spitta, Bernd Henschenmacher, Sebastian Diegeler, Christa Baumstark-Khan
Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions...
2016: Frontiers in Oncology
Daniela Grimm, Jirka Grosse, Markus Wehland, Vivek Mann, Janne Elin Reseland, Alamelu Sundaresan, Thomas Juhl Corydon
Experiencing real weightlessness in space is a dream for many of us who are interested in space research. Although space traveling fascinates us, it can cause both short-term and long-term health problems. Microgravity is the most important influence on the human organism in space. The human body undergoes dramatic changes during a long-term spaceflight. In this review, we will mainly focus on changes in calcium, sodium and bone metabolism of space travelers. Moreover, we report on the current knowledge on the mechanisms of bone loss in space, available models to simulate the effects of microgravity on bone on Earth as well as the combined effects of microgravity and cosmic radiation on bone...
June 2016: Bone
Dwain L Eckberg, André Diedrich, William H Cooke, Italo Biaggioni, Jay C Buckey, James A Pawelczyk, Andrew C Ertl, James F Cox, Tom A Kuusela, Kari U O Tahvanainen, Tadaaki Mano, Satoshi Iwase, Friedhelm J Baisch, Benjamin D Levine, Beverley Adams-Huet, David Robertson, C Gunnar Blomqvist
KEY POINTS: We studied healthy astronauts before, during and after the Neurolab Space Shuttle mission with controlled breathing and apnoea, to identify autonomic changes that might contribute to postflight orthostatic intolerance. Measurements included the electrocardiogram, finger photoplethysmographic arterial pressure, respiratory carbon dioxide levels, tidal volume and peroneal nerve muscle sympathetic activity. Arterial pressure fell and then rose in space, and drifted back to preflight levels after return to Earth...
October 1, 2016: Journal of Physiology
Masahiro Terada, Masaya Seki, Rika Takahashi, Shin Yamada, Akira Higashibata, Hideyuki J Majima, Masamichi Sudoh, Chiaki Mukai, Noriaki Ishioka
Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses...
2016: PloS One
Ye Zhang, Tao Lu, Michael Wong, Xiaoyu Wang, Louis Stodieck, Fathi Karouia, Michael Story, Honglu Wu
Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells...
June 2016: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
Benjamin J Ryan, Jesse A Goodrich, Walter F Schmidt, Ellen R Stothard, Kenneth P Wright, William C Byrnes
What is the central question of this study? Is haemoglobin mass (Hbmass) decreased following 4 days of head-down tilt bed rest (HDTBR), and does increased red blood cell (RBC) destruction mediate this adaptation? What is the main finding and its importance? Haemoglobin mass was increased immediately following HDTBR, before decreasing below baseline 5 days after return to normal living conditions. The transient increase in Hbmass might be the result of decreased RBC destruction, but it is also possible that spleen contraction after HDTBR contributed to this adaptation...
May 1, 2016: Experimental Physiology
Camilla Urbaniak, Gregor Reid
Humans have been exploring space for almost 55 years but space travel comes with many psychological and physiological changes that astronauts have to adapt to, both during and post flight missions. Now, with the reality of such missions lasting years, maintaining proper health of the flight crew is a high priority. While conditions such as nausea, bone loss, renal calculi and depression have been recognized, and approaches to medical and surgical care in space considered, the influence of the microbiota could be of added significance in maintaining astronaut health...
2016: Women's Health
Tuo Zhao, Xin Tang, Channakeshava Sokke Umeshappa, Hong Ma, Haijun Gao, Yulin Deng, Andrew Freywald, Jim Xiang
Microgravity has been known to induce cell death. However, its underlying mechanism is less studied. In this study, BL6-10 melanoma cells were cultured in flasks under simulated microgravity (SMG). We examined cell apoptosis, and assessed expression of genes associated with apoptosis and genes regulating apoptosis in cells under SMG. We demonstrate that SMG induces cell morphological changes and microtubule alterations by confocal microscopy, and enhances apoptosis by flow cytometry, which was associated with up- and down-regulation of pro-apoptotic and anti-apoptotic genes, respectively...
September 2016: Journal of Cellular Biochemistry
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"