Read by QxMD icon Read

Txnip AND anath shalev

Lance Thielen, Anath Shalev
PURPOSE OF REVIEW: Thioredoxin-interacting protein has emerged as a major factor regulating pancreatic β-cell dysfunction and death, key processes in the pathogenesis of type 1 and type 2 diabetes. Accumulating evidence based on basic, preclinical, and retrospective epidemiological research suggests that TXNIP represents a promising therapeutic target for diabetes. The present review is aimed at providing an update regarding these developments. RECENT FINDINGS: TXNIP has been shown to be induced by glucose and increased in diabetes and to promote β-cell apoptosis, whereas TXNIP deletion protected against diabetes...
April 2018: Current Opinion in Endocrinology, Diabetes, and Obesity
SeongHo Jo, Junqin Chen, Guanlan Xu, Truman B Grayson, Lance A Thielen, Anath Shalev
Glucagon-like peptide 1 receptor (GLP1R) agonists are widely used to treat diabetes. However, their function is dependent on adequate GLP1R expression, which is downregulated in diabetes. GLP1R is highly expressed on pancreatic β-cells, and activation by endogenous incretin or GLP1R agonists increases cAMP generation, which stimulates glucose-induced β-cell insulin secretion and helps maintain glucose homeostasis. We now have discovered that the highly β-cell-enriched microRNA, miR-204, directly targets the 3' UTR of GLP1R and thereby downregulates its expression in the β-cell-derived rat INS-1 cell line and primary mouse and human islets...
February 2018: Diabetes
Junqin Chen, Martin E Young, John C Chatham, David K Crossman, Louis J Dell'Italia, Anath Shalev
Myocardial fatty acid β-oxidation is critical for the maintenance of energy homeostasis and contractile function in the heart, but its regulation is still not fully understood. While thioredoxin-interacting protein (TXNIP) has recently been implicated in cardiac metabolism and mitochondrial function, its effects on β-oxidation have remained unexplored. Using a new cardiomyocyte-specific TXNIP knockout mouse and working heart perfusion studies, as well as loss- and gain-of-function experiments in rat H9C2 and human AC16 cardiomyocytes, we discovered that TXNIP deficiency promotes myocardial β-oxidation via signaling through a specific microRNA, miR-33a...
July 1, 2016: American Journal of Physiology. Heart and Circulatory Physiology
Kyunghee Hong, Guanlan Xu, Truman B Grayson, Anath Shalev
Thioredoxin-interacting protein (TXNIP) is a key regulator of diabetic β-cell apoptosis and dysfunction, and TXNIP inhibition prevents diabetes in mouse models of type 1 and type 2 diabetes. Although we have previously shown that TXNIP is strongly induced by glucose, any regulation by the proinflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and interferon γ (IFNγ) has remained largely unexplored. Moreover, even though this three-cytokine mixture is widely used to mimic type 1 diabetes in vitro, the mechanisms involved are not fully understood...
April 15, 2016: Journal of Biological Chemistry
Stephen R Filios, Guanlan Xu, Junqin Chen, Kyunghee Hong, Gu Jing, Anath Shalev
Small noncoding microRNAs have emerged as important regulators of cellular processes, but their role in pancreatic beta cells has only started to be elucidated. Loss of pancreatic beta cells is a key factor in the pathogenesis of diabetes, and we have demonstrated that beta cell expression of thioredoxin-interacting protein (TXNIP) is increased in diabetes and causes beta cell apoptosis, whereas TXNIP deficiency is protective against diabetes. Recently, we found that TXNIP also impairs beta cell function by inducing microRNA (miR)-204...
December 26, 2014: Journal of Biological Chemistry
Anath Shalev
Pancreatic β-cells are responsible for insulin production, and loss of functional β-cell mass is now recognized as a critical step in the pathogenesis of both type 1 and type 2 diabetes. However, the factors controlling the life and death of the pancreatic β-cell have only started to be elucidated. Discovered as the top glucose-induced gene in a human islet microarray study 12 years ago, thioredoxin-interacting protein (TXNIP) has now emerged as such a key player in pancreatic β-cell biology. Since then, β-cell expression of TXNIP has been found to be tightly regulated by multiple factors and to be dramatically increased in diabetic islets...
August 2014: Molecular Endocrinology
Junqin Chen, Gu Jing, Guanlan Xu, Anath Shalev
Thioredoxin-interacting protein (TXNIP) has emerged as a key regulator of important cellular processes including redox state, inflammation, and apoptosis and plays a particularly critical role in pancreatic β-cell biology and diabetes development. High glucose and diabetes induce TXNIP expression, whereas inhibition of TXNIP expression or TXNIP deficiency protects against pancreatic β-cell apoptosis and diabetes. We now have discovered that TXNIP stimulates its own expression by promoting dephosphorylation and nuclear translocation of its transcription factor, carbohydrate response element-binding protein (ChREBP), resulting in a positive feedback loop as well as regulation of other ChREBP target genes playing important roles in glucose and lipid metabolism...
May 2014: Molecular Endocrinology
Gu Jing, Clara Westwell-Roper, Junqin Chen, Guanlan Xu, C Bruce Verchere, Anath Shalev
Thioredoxin-interacting protein (TXNIP) is up-regulated by glucose and diabetes and plays a critical role in glucotoxicity, inflammation, and beta-cell apoptosis, whereas we have found that TXNIP deficiency protects against diabetes. Interestingly, human islet amyloid polypeptide (IAPP) is also induced by glucose, aggregates into insoluble amyloid fibrils found in islets of most individuals with type 2 diabetes and promotes inflammation and beta-cell cytotoxicity. However, so far no connection between TXNIP and IAPP signaling had been reported...
April 25, 2014: Journal of Biological Chemistry
Guanlan Xu, Junqin Chen, Gu Jing, Anath Shalev
Beta-cell dysfunction and impaired insulin production are hallmarks of diabetes, but despite the growing diabetes epidemic, the molecular mechanisms underlying this disease have remained unclear. We identified thioredoxin-interacting protein (TXNIP), a cellular redox regulator, as a crucial factor in beta-cell biology and show that beta-cell TXNIP is upregulated in diabetes, whereas TXNIP deficiency protects against diabetes by preventing beta-cell apoptosis. Here we show that TXNIP and diabetes induce beta-cell expression of a specific microRNA, miR-204, which in turn blocks insulin production by directly targeting and downregulating MAFA, a known insulin transcription factor...
September 2013: Nature Medicine
Carly Kibbe, Junqin Chen, Guanlan Xu, Gu Jing, Anath Shalev
Thioredoxin-interacting protein (TXNIP) has emerged as an important factor in pancreatic beta cell biology, and tight regulation of TXNIP levels is necessary for beta cell survival. However, the mechanisms regulating TXNIP expression have only started to be elucidated. The forkhead boxO1 transcription factor (FOXO1) has been reported to up-regulate TXNIP expression in neurons and endothelial cells but to down-regulate TXNIP in liver, and the effects on beta cells have remained unknown. We now have found that FOXO1 binds to the TXNIP promoter in vivo in human islets and INS-1 beta cells and significantly decreases TXNIP expression...
August 9, 2013: Journal of Biological Chemistry
Hyunjoo Cha-Molstad, Guanlan Xu, Junqin Chen, Gu Jing, Martin E Young, John C Chatham, Anath Shalev
First-generation calcium channel blockers such as verapamil are a widely used class of antihypertensive drugs that block L-type calcium channels. We recently discovered that they also reduce cardiac expression of proapoptotic thioredoxin-interacting protein (TXNIP), suggesting that they may have unappreciated transcriptional effects. By use of TXNIP promoter deletion and mutation studies, we found that a CCAAT element was mediating verapamil-induced transcriptional repression and identified nuclear factor Y (NFY) to be the responsible transcription factor as assessed by overexpression/knockdown and luciferase and chromatin immunoprecipitation assays in cardiomyocytes and in vivo in diabetic mice receiving oral verapamil...
September 2012: Molecular Pharmacology
Guanlan Xu, Junqin Chen, Gu Jing, Anath Shalev
Although loss of functional β-cell mass is a hallmark of diabetes, no treatment approaches that halt this process are currently available. We recently identified thioredoxin-interacting protein (TXNIP) as an attractive target in this regard. Glucose and diabetes upregulate β-cell TXNIP expression, and TXNIP overexpression induces β-cell apoptosis. In contrast, genetic ablation of TXNIP promotes endogenous β-cell survival and prevents streptozotocin (STZ)- and obesity-induced diabetes. Finding an oral medication that could inhibit β-cell TXNIP expression would therefore represent a major breakthrough...
April 2012: Diabetes
Geetu Saxena, Junqin Chen, Anath Shalev
The thioredoxin-interacting protein TXNIP is a ubiquitously expressed redox protein that promotes apoptosis. Recently, we found that TXNIP deficiency protects against type 1 and 2 diabetes by inhibiting beta cell apoptosis and maintaining pancreatic beta cell mass, indicating that TXNIP plays a key role in beta cell biology. However, very little is known about the intracellular localization and function of TXNIP, and although TXNIP has been thought to be a cytoplasmic protein, our immunohistochemistry studies in beta cells surprisingly revealed a nuclear TXNIP localization, suggesting that TXNIP may shuttle within the cell...
February 5, 2010: Journal of Biological Chemistry
Junqin Chen, Ghislaine Fontes, Geetu Saxena, Vincent Poitout, Anath Shalev
OBJECTIVE: We have previously shown that lack of thioredoxin-interacting protein (TXNIP) protects against diabetes and glucotoxicity-induced beta-cell apoptosis. Because the role of TXNIP in lipotoxicity is unknown, the goal of the present study was to determine whether TXNIP expression is regulated by fatty acids and whether TXNIP deficiency also protects beta-cells against lipoapoptosis. RESARCH DESIGN AND METHODS: To determine the effects of fatty acids on beta-cell TXNIP expression, INS-1 cells and isolated islets were incubated with/without palmitate and rats underwent cyclic infusions of glucose and/or Intralipid prior to islet isolation and analysis by quantitative real-time RT-PCR and immunoblotting...
February 2010: Diabetes
Hyunjoo Cha-Molstad, Geetu Saxena, Junqin Chen, Anath Shalev
Recently, we identified Txnip (thioredoxin-interacting protein) as a mediator of glucotoxic beta cell death and discovered that lack of Txnip protects against streptozotocin- and obesity-induced diabetes by preventing beta cell apoptosis and preserving endogenous beta cell mass. Txnip has therefore become an attractive target for diabetes therapy, but although we have found that txnip transcription is highly induced by glucose through a unique carbohydrate response element, the factors controlling this effect have remained unknown...
June 19, 2009: Journal of Biological Chemistry
Junqin Chen, Hyunjoo Cha-Molstad, Anna Szabo, Anath Shalev
Cardiomyocyte apoptosis is a critical process in the pathogenesis of ischemic and diabetic cardiomyopathy, but the mechanisms are not fully understood. Thioredoxin-interacting protein (TXNIP) has recently been shown to have deleterious effects in the cardiovascular system and we therefore investigated whether it may also play a role in diabetes-associated cardiomyocyte apoptosis. In fact, TXNIP expression was increased in H9C2 cardiomyocytes incubated at high glucose, and cardiac expression of TXNIP and cleaved caspase-3 were also elevated in vivo in streptozotocin- and obesity-induced diabetic mice...
May 2009: American Journal of Physiology. Endocrinology and Metabolism
Anath Shalev
Glucotoxicity plays a major role in pancreatic beta-cell apoptosis and diabetes progression, but the factors involved have remained largely unknown. Our recent studies have identified TXNIP (thioredoxin-interacting protein) as a novel pro-apoptotic beta-cell factor that is induced by glucose, suggesting that TXNIP may play a role in beta-cell glucotoxicity. Incubation of INS-1 beta-cells and isolated primary mouse and human islets at high glucose levels led to a significant increase in TXNIP as well as in apoptosis...
October 2008: Biochemical Society Transactions
Junqin Chen, Simon T Hui, Francesca M Couto, Imran N Mungrue, Dawn B Davis, Alan D Attie, Aldons J Lusis, Roger A Davis, Anath Shalev
Pancreatic beta-cell loss through apoptosis represents a key factor in the pathogenesis of diabetes; however, no effective approaches to block this process and preserve endogenous beta-cell mass are currently available. To study the role of thioredoxin-interacting protein (TXNIP), a proapoptotic beta-cell factor we recently identified, we used HcB-19 (TXNIP nonsense mutation) and beta-cell-specific TXNIP knockout (bTKO) mice. Interestingly, HcB-19 mice demonstrate increased adiposity, but have lower blood glucose levels and increased pancreatic beta-cell mass (as assessed by morphometry)...
October 2008: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
Junqin Chen, Geetu Saxena, Imran N Mungrue, Aldons J Lusis, Anath Shalev
OBJECTIVE: In diabetes, glucose toxicity affects different organ systems, including pancreatic islets where it leads to beta-cell apoptosis, but the mechanisms are not fully understood. Recently, we identified thioredoxin-interacting protein (TXNIP) as a proapoptotic beta-cell factor that is induced by glucose, raising the possibility that TXNIP may play a role in beta-cell glucose toxicity. RESEARCH DESIGN AND METHODS: To assess the effects of glucose on TXNIP expression and apoptosis and define the role of TXNIP, we used INS-1 beta-cells; primary mouse islets; obese, diabetic BTBR...
April 2008: Diabetes
Davis W Cheng, Yan Jiang, Anath Shalev, Renu Kowluru, Errol D Crook, Lalit P Singh
Renal mesangial cells play an important role in the development of diabetic kidney disease. We have previously demonstrated that some of the effects of high glucose on mesangial extracellular matrix (ECM) protein expression are mediated by the hexosamine biosynthesis pathway (HBP) in which fructose-6-phosphate is converted to glucosamine-6-phosphate by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFAT). Using Affymetrix murine expression U430 2.0 oligochips, we examined the global effects of high glucose (HG) and glucosamine (GlcN) on mRNA expression of a mouse mesangial cell line (MES-13)...
October 2006: Archives of Physiology and Biochemistry
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"