keyword
MENU ▼
Read by QxMD icon Read
search

parkinson's disease and mitochondria

keyword
https://www.readbyqxmd.com/read/28806519/pluronic-p85-f68-micelles-of-baicalein-could-interfere-with-mitochondria-to-overcome-mrp2-mediated-efflux-and-offer-improved-anti-parkinsonian-activity
#1
Tongkai Chen, Ye Li, Chuwen Li, Xiang Yi, Ruibing Wang, Simon Ming Yuen Lee, Ying Zheng
Overexpression of the drug efflux transporter multidrug resistance-associated protein 2 (MRP2) in the gastrointestinal tract and blood-brain barrier compromises the oral delivery of drugs to the circulation system and brain in the treatment of Parkinson's disease (PD). In this study, we aim to develop small-sized Pluronic P85/F68 micelles loaded with baicalein (B-MCs) to overcome MRP2-mediated efflux and to investigate related mechanism, as well as the anti-Parkinsonian efficacy. Spherical and sustained-release B-MCs have a mean particle size of 40...
August 14, 2017: Molecular Pharmaceutics
https://www.readbyqxmd.com/read/28800639/mitochondrial-impairment-and-melatonin-protection-in-parkinsonian-mice-do-not-depend-of-inducible-or-neuronal-nitric-oxide-synthases
#2
Ana López, Francisco Ortiz, Carolina Doerrier, Carmen Venegas, Marisol Fernández-Ortiz, Paula Aranda, María E Díaz-Casado, Beatriz Fernández-Gil, Eliana Barriocanal-Casado, Germaine Escames, Luis C López, Darío Acuña-Castroviejo
MPTP-mouse model constitutes a well-known model of neuroinflammation and mitochondrial failure occurring in Parkinson's disease (PD). Although it has been extensively reported that nitric oxide (NO●) plays a key role in the pathogenesis of PD, the relative roles of nitric oxide synthase isoforms iNOS and nNOS in the nigrostriatal pathway remains, however, unclear. Here, the participation of iNOS/nNOS isoforms in the mitochondrial dysfunction was analyzed in iNOS and nNOS deficient mice. Our results showed that MPTP increased iNOS activity in substantia nigra and striatum, whereas it sharply reduced complex I activity and mitochondrial bioenergetics in all strains...
2017: PloS One
https://www.readbyqxmd.com/read/28798236/the-unintended-mitochondrial-uncoupling-effects-of-the-fda-approved-anti-helminth-drug-nitazoxanide-mitigates-experimental-parkinsonism-in-mice
#3
Niharika Amireddy, Srinivas N Puttapaka, Ravali L Vinnakota, Halley G Ravuri, Swaroop Thonda, Shasi V Kalivendi
Mitochondria plays a primary role in the pathophysiology of Parkinson's disease (PD) and small molecules that counteract the initial stages of disease may offer therapeutic benefit. In this regard, we have examined whether the off-target effects of the FDA approved anti-helminth drug, nitazoxanide (NTZ) on mitochondrial respiration could possess any therapeutic potential for PD. Results indicate that MPP(+) induced loss in oxygen consumption rate (OCR) and ATP production by mitochondria were ameliorated by NTZ in real-time by virtue of its mild-uncoupling effect...
August 10, 2017: Journal of Biological Chemistry
https://www.readbyqxmd.com/read/28797885/mitophagy-in-neurodegenerative-diseases
#4
REVIEW
Carlo Rodolfo, Silvia Campello, Francesco Cecconi
Neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS), are a complex "family" of pathologies, characterised by the progressive loss of neurons and/or neuronal functions, leading to severe physical and cognitive inabilities in affected patients. These syndromes, despite differences in the causative events, the onset, and the progression of the disease, share as common features the presence of aggregate-prone neuro-toxic proteins, in the form of aggresomes and/or inclusion bodies, perturbing cellular homeostasis and neuronal function (Popovic et al...
August 7, 2017: Neurochemistry International
https://www.readbyqxmd.com/read/28791420/melatonin-as-a-mitochondrial-protector-in-neurodegenerative-diseases
#5
REVIEW
Pawaris Wongprayoon, Piyarat Govitrapong
Mitochondria are crucial organelles as their role in cellular energy production of eukaryotes. Because the brain cells demand high energy for maintaining their normal activities, disturbances in mitochondrial physiology may lead to neuropathological events underlying neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Melatonin is an endogenous compound with a variety of physiological roles. In addition, it possesses potent antioxidant properties which effectively play protective roles in several pathological conditions...
August 8, 2017: Cellular and Molecular Life Sciences: CMLS
https://www.readbyqxmd.com/read/28790012/mdivi-1-ameliorates-early-brain-injury-after-subarachnoid-hemorrhage-via-the-suppression-of-inflammation-related-blood-brain-barrier-disruption-and-endoplasmic-reticulum-stress-based-apoptosis
#6
Lin-Feng Fan, Ping-You He, Yu-Cong Peng, Qing-Hua Du, Yi-Jun Ma, Jian-Xiang Jin, Hang-Zhe Xu, Jian-Ru Li, Zhi-Jiang Wang, Sheng-Long Cao, Tao Li, Feng Yan, Chi Gu, Lin Wang, Gao Chen
Aberrant modulation of mitochondrial dynamic network, which shifts the balance of fusion and fission towards fission, is involved in brain damage of various neurodegenerative diseases including Parkinson's disease, Huntington's disease and Alzheimer's disease. A recent research has shown that the inhibition of mitochondrial fission alleviates early brain injury after experimental subarachnoid hemorrhage, however, the underlying molecular mechanisms have remained to be elucidated. This study was undertaken to characterize the effects of the inhibition of dynamin-related protein-1 (Drp1, a dominator of mitochondrial fission) on blood-brain barrier (BBB) disruption and neuronal apoptosis following SAH and the potential mechanisms...
August 5, 2017: Free Radical Biology & Medicine
https://www.readbyqxmd.com/read/28782874/in-vivo-imaging-reveals-mitophagy-independence-in-the-maintenance-of-axonal-mitochondria-during-normal-aging
#7
Xu Cao, Haiqiong Wang, Zhao Wang, Qingyao Wang, Shuang Zhang, Yuanping Deng, Yanshan Fang
Mitophagy is thought to be a critical mitochondrial quality control mechanism in neurons and has been extensively studied in neurological disorders such as Parkinson's disease. However, little is known about how mitochondria are maintained in the lengthy neuronal axons in the context of physiological aging. Here, we utilized the unique Drosophila wing nerve model and in vivo imaging to rigorously profile changes in axonal mitochondria during aging. We revealed that mitochondria became fragmented and accumulated in aged axons...
August 7, 2017: Aging Cell
https://www.readbyqxmd.com/read/28780002/sex-specific-gene-expression-and-life-span-regulation
#8
REVIEW
John Tower
Aging-related diseases show a marked sex bias. For example, women live longer than men yet have more Alzheimer's disease and osteoporosis, whereas men have more cancer and Parkinson's disease. Understanding the role of sex will be important in designing interventions and in understanding basic aging mechanisms. Aging also shows sex differences in model organisms. Dietary restriction (DR), reduced insulin/IGF1-like signaling (IIS), and reduced TOR signaling each increase life span preferentially in females in both flies and mice...
August 2, 2017: Trends in Endocrinology and Metabolism: TEM
https://www.readbyqxmd.com/read/28768533/progression-of-pathology-in-pink1-deficient-mouse-brain-from-splicing-via-ubiquitination-er-stress-and-mitophagy-changes-to-neuroinflammation
#9
Sylvia Torres-Odio, Jana Key, Hans-Hermann Hoepken, Júlia Canet-Pons, Lucie Valek, Bastian Roller, Michael Walter, Blas Morales-Gordo, David Meierhofer, Patrick N Harter, Michel Mittelbronn, Irmgard Tegeder, Suzana Gispert, Georg Auburger
BACKGROUND: PINK1 deficiency causes the autosomal recessive PARK6 variant of Parkinson's disease. PINK1 activates ubiquitin by phosphorylation and cooperates with the downstream ubiquitin ligase PARKIN, to exert quality control and control autophagic degradation of mitochondria and of misfolded proteins in all cell types. METHODS: Global transcriptome profiling of mouse brain and neuron cultures were assessed in protein-protein interaction diagrams and by pathway enrichment algorithms...
August 2, 2017: Journal of Neuroinflammation
https://www.readbyqxmd.com/read/28766175/backbone-and-side-chain-resonance-assignments-for-a-structured-domain-within-atg32
#10
Xue Xia, Maria Pellegrini, Michael J Ragusa
Autophagy is a catabolic cellular process that targets cytosolic material, including mitochondria, to the vacuole or lysosomes for degradation. The selective degradation of mitochondria by autophagy is termed mitophagy. Dysfunctional mitophagy, which leads to the accumulation of damaged mitochondria, has been implicated in Parkinson's disease, cancer, cardiac disease and metabolic disease. In Saccharomyces cerevisiae, mitophagy is initiated by the autophagy receptor Atg32, an outer mitochondrial membrane protein...
August 1, 2017: Biomolecular NMR Assignments
https://www.readbyqxmd.com/read/28757096/clinical-effects-of-chemical-exposures-on-mitochondrial-function
#11
Zarazuela Zolkipli-Cunningham, Marni J Falk
Mitochondria are critical for the provision of ATP for cellular energy requirements. Tissue and organ functions are dependent on adequate ATP production, especially when energy demand is high. Mitochondria also play a role in a vast array of important biochemical pathways including apoptosis, generation and detoxification of reactive oxygen species, intracellular calcium regulation, steroid hormone and heme synthesis, and lipid metabolism. The complexity of mitochondrial structure and function facilitates its diverse roles but also enhances its vulnerability...
July 27, 2017: Toxicology
https://www.readbyqxmd.com/read/28743955/early-synaptic-dysfunction-induced-by-%C3%AE-synuclein-in-a-rat-model-of-parkinson-s-disease
#12
Jenny-Ann Phan, Kathrine Stokholm, Justyna Zareba-Paslawska, Steen Jakobsen, Kim Vang, Albert Gjedde, Anne M Landau, Marina Romero-Ramos
Evidence suggests that synapses are affected first in Parkinson's disease (PD). Here, we tested the claim that pathological accumulation of α-synuclein, and subsequent synaptic disruption, occur in absence of dopaminergic neuron loss in PD. We determined early synaptic changes in rats that overexpress human α-synuclein by local injection of viral-vectors in midbrain. We aimed to achieve α-synuclein levels sufficient to induce terminal pathology without significant loss of nigral neurons. We tested synaptic disruption in vivo by analyzing motor defects and binding of a positron emission tomography (PET) radioligand to the vesicular monoamine transporter 2, (VMAT2), [(11)C]dihydrotetrabenazine (DTBZ)...
July 25, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28711655/ubiquitination-at-the-mitochondria-in-neuronal-health-and-disease
#13
REVIEW
Christian Covill-Cooke, Jack Howden, Nicol Birsa, Josef Kittler
The preservation of mitochondrial function is of particular importance in neurons given the high energy requirements of action potential propagation and synaptic transmission. Indeed, disruptions in mitochondrial dynamics and quality control are linked to cellular pathology in neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Here, we will discuss the role of ubiquitination by the E3 ligases: Parkin, MARCH5 and Mul1, and how they regulate mitochondrial homeostasis. Furthermore, given the role of Parkin and Mul1 in the formation of mitochondria-derived vesicles we give an overview of this area of mitochondrial homeostasis...
July 12, 2017: Neurochemistry International
https://www.readbyqxmd.com/read/28701960/role-of-mitochondrial-reverse-electron-transport-in-ros-signaling-potential-roles-in-health-and-disease
#14
REVIEW
Filippo Scialò, Daniel J Fernández-Ayala, Alberto Sanz
Reactive Oxygen Species (ROS) can cause oxidative damage and have been proposed to be the main cause of aging and age-related diseases including cancer, diabetes and Parkinson's disease. Accordingly, mitochondria from old individuals have higher levels of ROS. However, ROS also participate in cellular signaling, are instrumental for several physiological processes and boosting ROS levels in model organisms extends lifespan. The current consensus is that low levels of ROS are beneficial, facilitating adaptation to stress via signaling, whereas high levels of ROS are deleterious because they trigger oxidative stress...
2017: Frontiers in Physiology
https://www.readbyqxmd.com/read/28698628/%C3%AE-synuclein-control-of-mitochondrial-homeostasis-in-human-derived-neurons-is-disrupted-by-mutations-associated-with-parkinson-s-disease
#15
Victorio Martin Pozo Devoto, Nicolas Dimopoulos, Matías Alloatti, María Belén Pardi, Trinidad M Saez, María Gabriela Otero, Lucas Eneas Cromberg, Antonia Marín-Burgin, Maria Elida Scassa, Gorazd B Stokin, Alejandro F Schinder, Gustavo Sevlever, Tomás Luis Falzone
The etiology of Parkinson's disease (PD) converges on a common pathogenic pathway of mitochondrial defects in which α-Synuclein (αSyn) is thought to play a role. However, the mechanisms by which αSyn and its disease-associated allelic variants cause mitochondrial dysfunction remain unknown. Here, we analyzed mitochondrial axonal transport and morphology in human-derived neurons overexpressing wild-type (WT) αSyn or the mutated variants A30P or A53T, which are known to have differential lipid affinities...
July 11, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28673772/methyl-4-phenylpyridinium-mpp-differentially-affects-monoamine-release-and-re-uptake-in-murine-embryonic-stem-cell-derived-dopaminergic-and-serotonergic-neurons
#16
Yasmina Martí, Friederike Matthaeus, Thorsten Lau, Patrick Schloss
1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) is known to selectively damage dopaminergic (DA) cells in the substantia nigra and to produce symptoms which are alike to those observed in Parkinson's disease (PD). Based on the similarity between MPTP-induced neurotoxicity and PD-related neuropathology, application of MPTP or its metabolite methyl-4-phenylpyridinium (MPP+) was successfully established in experimental rodent models to study PD-related neurodegenerative events. MPP+ is taken up by the dopamine transporter (DAT) into DA neurons where it exerts its neurotoxic action on mitochondria by affecting complex I of the respiratory chain...
June 30, 2017: Molecular and Cellular Neurosciences
https://www.readbyqxmd.com/read/28673739/sirtuin-3-rescues-neurons-through-the-stabilisation-of-mitochondrial-biogenetics-in-the-virally-expressing-mutant-%C3%AE-synuclein-rat-model-of-parkinsonism
#17
Jacqueline A Gleave, Lindsay R Arathoon, Dennison Trinh, Kristin E Lizal, Nicolas Giguère, James H M Barber, Zainab Najarali, M Hassan Khan, Sherri L Thiele, Mahin S Semmen, James B Koprich, Jonathan M Brotchie, James H Eubanks, Louis-Eric Trudeau, Joanne E Nash
Parkinson's disease (PD) is a neurodegenerative movement disorder, which affects approximately 1-2% of the population over 60years of age. Current treatments for PD are symptomatic, and the pathology of the disease continues to progresses over time until palliative care is required. Mitochondria are key players in the pathology of PD. Genetic and post mortem studies have shown a large number of mitochondrial abnormalities in the substantia nigra pars compacta (SNc) of the parkinsonian brain. Furthermore, physiologically, mitochondria of nigral neurons are constantly under unusually high levels of metabolic stress because of the excitatory properties and architecture of these neurons...
July 1, 2017: Neurobiology of Disease
https://www.readbyqxmd.com/read/28672983/neuroprotective-effect-of-carnosine-against-salsolinol-induced-parkinson-s-disease
#18
Jun Zhao, Lei Shi, Li-Rong Zhang
Carnosine is a dipeptide of β-alanine and histidine amino acids. It is widely present in muscle and brain tissues. Carnosine has been demonstrated to be an antioxidant agent that is beneficial in animals. Reactive oxygen species (ROS) and aldehydes are are generated from membrane fatty acid oxidation. The antioxidant potential and toxicity of salsolinol had been extensively studied in vivo and in vitro. The present study analyzed the protective effect of carnosine against Parkinson's disease in the salsolinol-induced rat brain and rat brain endothelial cells...
July 2017: Experimental and Therapeutic Medicine
https://www.readbyqxmd.com/read/28632757/molecular-mechanism-of-drp1-assembly-studied-in-vitro-by-cryo-electron-microscopy
#19
Kaustuv Basu, Driss Lajoie, Tristan Aumentado-Armstrong, Jin Chen, Roman I Koning, Blaise Bossy, Mihnea Bostina, Attila Sik, Ella Bossy-Wetzel, Isabelle Rouiller
Mitochondria are dynamic organelles that continually adapt their morphology by fusion and fission events. An imbalance between fusion and fission has been linked to major neurodegenerative diseases, including Huntington's, Alzheimer's, and Parkinson's diseases. A member of the Dynamin superfamily, dynamin-related protein 1 (DRP1), a dynamin-related GTPase, is required for mitochondrial membrane fission. Self-assembly of DRP1 into oligomers in a GTP-dependent manner likely drives the division process. We show here that DRP1 self-assembles in two ways: i) in the presence of the non-hydrolysable GTP analog GMP-PNP into spiral-like structures of ~36 nm diameter; and ii) in the presence of GTP into rings composed of 13-18 monomers...
2017: PloS One
https://www.readbyqxmd.com/read/28620835/twenty-years-since-the-discovery-of-the-parkin-gene
#20
REVIEW
Nobutaka Hattori, Yoshikuni Mizuno
Nearly 20 years have passed since we identified the causative gene for a familial Parkinson's disease, parkin (now known as PARK2), in 1998. PARK2 is the most common gene responsible for young-onset Parkinson's disease. It codes for the protein Parkin RBR E3 ubiquitin-protein ligase (PARK2), which directly links to the ubiquitin-proteasome as a ubiquitin ligase. PARK2 is involved in mitophagy, which is a type of autophagy, in collaboration with PTEN-induced putative kinase 1 (PINK1). The PINK1 gene (previously known as PARK6) is also a causative gene for young-onset Parkinson's disease...
June 15, 2017: Journal of Neural Transmission
keyword
keyword
85731
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"