keyword
MENU ▼
Read by QxMD icon Read
search

parkinson's disease and mitochondria

keyword
https://www.readbyqxmd.com/read/28711655/ubiquitination-at-the-mitochondria-in-neuronal-health-and-disease
#1
REVIEW
Christian Covill-Cooke, Jack Howden, Nicol Birsa, Josef Kittler
The preservation of mitochondrial function is of particular importance in neurons given the high energy requirements of action potential propagation and synaptic transmission. Indeed, disruptions in mitochondrial dynamics and quality control are linked to cellular pathology in neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Here, we will discuss the role of ubiquitination by the E3 ligases: Parkin, MARCH5 and Mul1, and how they regulate mitochondrial homeostasis. Furthermore, given the role of Parkin and Mul1 in the formation of mitochondria-derived vesicles we give an overview of this area of mitochondrial homeostasis...
July 12, 2017: Neurochemistry International
https://www.readbyqxmd.com/read/28701960/role-of-mitochondrial-reverse-electron-transport-in-ros-signaling-potential-roles-in-health-and-disease
#2
REVIEW
Filippo Scialò, Daniel J Fernández-Ayala, Alberto Sanz
Reactive Oxygen Species (ROS) can cause oxidative damage and have been proposed to be the main cause of aging and age-related diseases including cancer, diabetes and Parkinson's disease. Accordingly, mitochondria from old individuals have higher levels of ROS. However, ROS also participate in cellular signaling, are instrumental for several physiological processes and boosting ROS levels in model organisms extends lifespan. The current consensus is that low levels of ROS are beneficial, facilitating adaptation to stress via signaling, whereas high levels of ROS are deleterious because they trigger oxidative stress...
2017: Frontiers in Physiology
https://www.readbyqxmd.com/read/28698628/%C3%AE-synuclein-control-of-mitochondrial-homeostasis-in-human-derived-neurons-is-disrupted-by-mutations-associated-with-parkinson-s-disease
#3
Victorio Martin Pozo Devoto, Nicolas Dimopoulos, Matías Alloatti, María Belén Pardi, Trinidad M Saez, María Gabriela Otero, Lucas Eneas Cromberg, Antonia Marín-Burgin, Maria Elida Scassa, Gorazd B Stokin, Alejandro F Schinder, Gustavo Sevlever, Tomás Luis Falzone
The etiology of Parkinson's disease (PD) converges on a common pathogenic pathway of mitochondrial defects in which α-Synuclein (αSyn) is thought to play a role. However, the mechanisms by which αSyn and its disease-associated allelic variants cause mitochondrial dysfunction remain unknown. Here, we analyzed mitochondrial axonal transport and morphology in human-derived neurons overexpressing wild-type (WT) αSyn or the mutated variants A30P or A53T, which are known to have differential lipid affinities...
July 11, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28673772/methyl-4-phenylpyridinium-mpp-differentially-affects-monoamine-release-and-re-uptake-in-murine-embryonic-stem-cell-derived-dopaminergic-and-serotonergic-neurons
#4
Yasmina Martí, Friederike Matthaeus, Thorsten Lau, Patrick Schloss
1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) is known to selectively damage dopaminergic (DA) cells in the substantia nigra and to produce symptoms which are alike to those observed in Parkinson's disease (PD). Based on the similarity between MPTP-induced neurotoxicity and PD-related neuropathology, application of MPTP or its metabolite methyl-4-phenylpyridinium (MPP+) was successfully established in experimental rodent models to study PD-related neurodegenerative events. MPP+ is taken up by the dopamine transporter (DAT) into DA neurons where it exerts its neurotoxic action on mitochondria by affecting complex I of the respiratory chain...
June 30, 2017: Molecular and Cellular Neurosciences
https://www.readbyqxmd.com/read/28673739/sirtuin-3-rescues-neurons-through-the-stabilisation-of-mitochondrial-biogenetics-in-the-virally-expressing-mutant-%C3%AE-synuclein-rat-model-of-parkinsonism
#5
Jacqueline A Gleave, Lindsay R Arathoon, Dennison Trinh, Kristin E Lizal, Nicolas Giguère, James H M Barber, Zainab Najarali, M Hassan Khan, Sherri L Thiele, Mahin S Semmen, James B Koprich, Jonathan M Brotchie, James H Eubanks, Louis-Eric Trudeau, Joanne E Nash
Parkinson's disease (PD) is a neurodegenerative movement disorder, which affects approximately 1-2% of the population over 60years of age. Current treatments for PD are symptomatic, and the pathology of the disease continues to progresses over time until palliative care is required. Mitochondria are key players in the pathology of PD. Genetic and post mortem studies have shown a large number of mitochondrial abnormalities in the substantia nigra pars compacta (SNc) of the parkinsonian brain. Furthermore, physiologically, mitochondria of nigral neurons are constantly under unusually high levels of metabolic stress because of the excitatory properties and architecture of these neurons...
July 1, 2017: Neurobiology of Disease
https://www.readbyqxmd.com/read/28672983/neuroprotective-effect-of-carnosine-against-salsolinol-induced-parkinson-s-disease
#6
Jun Zhao, Lei Shi, Li-Rong Zhang
Carnosine is a dipeptide of β-alanine and histidine amino acids. It is widely present in muscle and brain tissues. Carnosine has been demonstrated to be an antioxidant agent that is beneficial in animals. Reactive oxygen species (ROS) and aldehydes are are generated from membrane fatty acid oxidation. The antioxidant potential and toxicity of salsolinol had been extensively studied in vivo and in vitro. The present study analyzed the protective effect of carnosine against Parkinson's disease in the salsolinol-induced rat brain and rat brain endothelial cells...
July 2017: Experimental and Therapeutic Medicine
https://www.readbyqxmd.com/read/28632757/molecular-mechanism-of-drp1-assembly-studied-in-vitro-by-cryo-electron-microscopy
#7
Kaustuv Basu, Driss Lajoie, Tristan Aumentado-Armstrong, Jin Chen, Roman I Koning, Blaise Bossy, Mihnea Bostina, Attila Sik, Ella Bossy-Wetzel, Isabelle Rouiller
Mitochondria are dynamic organelles that continually adapt their morphology by fusion and fission events. An imbalance between fusion and fission has been linked to major neurodegenerative diseases, including Huntington's, Alzheimer's, and Parkinson's diseases. A member of the Dynamin superfamily, dynamin-related protein 1 (DRP1), a dynamin-related GTPase, is required for mitochondrial membrane fission. Self-assembly of DRP1 into oligomers in a GTP-dependent manner likely drives the division process. We show here that DRP1 self-assembles in two ways: i) in the presence of the non-hydrolysable GTP analog GMP-PNP into spiral-like structures of ~36 nm diameter; and ii) in the presence of GTP into rings composed of 13-18 monomers...
2017: PloS One
https://www.readbyqxmd.com/read/28620835/twenty-years-since-the-discovery-of-the-parkin-gene
#8
REVIEW
Nobutaka Hattori, Yoshikuni Mizuno
Nearly 20 years have passed since we identified the causative gene for a familial Parkinson's disease, parkin (now known as PARK2), in 1998. PARK2 is the most common gene responsible for young-onset Parkinson's disease. It codes for the protein Parkin RBR E3 ubiquitin-protein ligase (PARK2), which directly links to the ubiquitin-proteasome as a ubiquitin ligase. PARK2 is involved in mitophagy, which is a type of autophagy, in collaboration with PTEN-induced putative kinase 1 (PINK1). The PINK1 gene (previously known as PARK6) is also a causative gene for young-onset Parkinson's disease...
June 15, 2017: Journal of Neural Transmission
https://www.readbyqxmd.com/read/28611589/mitochondrial-effects-of-pgc-1alpha-silencing-in-mpp-treated-human-sh-sy5y-neuroblastoma-cells
#9
Qinyong Ye, Chun Chen, Erwang Si, Yousheng Cai, Juhua Wang, Wanling Huang, Dongzhu Li, Yingqing Wang, Xiaochun Chen
The dopaminergic neuron degeneration and loss that occurs in Parkinson's disease (PD) has been tightly linked to mitochondrial dysfunction. Although the aged-related cause of the mitochondrial defect observed in PD patients remains unclear, nuclear genes are of potential importance to mitochondrial function. Human peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) is a multi-functional transcription factor that tightly regulates mitochondrial biogenesis and oxidative capacity. The goal of the present study was to explore the potential pathogenic effects of interference by the PGC-1α gene on N-methyl-4-phenylpyridinium ion (MPP(+))-induced SH-SY5Y cells...
2017: Frontiers in Molecular Neuroscience
https://www.readbyqxmd.com/read/28611284/activation-of-the-atf2-creb-pgc-1%C3%AE-pathway-by-metformin-leads-to-dopaminergic-neuroprotection
#10
Hojin Kang, Rin Khang, Sangwoo Ham, Ga Ram Jeong, Hyojung Kim, Minkyung Jo, Byoung Dae Lee, Yun Il Lee, Areum Jo, Chi Hu Park, Hyein Kim, Jeongkon Seo, Sun Ha Paek, Yun-Song Lee, Jeong-Yun Choi, Yunjong Lee, Joo-Ho Shin
Progressive dopaminergic neurodegeneration is responsible for the canonical motor deficits in Parkinson's disease (PD). The widely prescribed anti-diabetic medicine metformin is effective in preventing neurodegeneration in animal models; however, despite the significant potential of metformin for treating PD, the therapeutic effects and molecular mechanisms underlying dopaminergic neuroprotection by metformin are largely unknown.In this study, we found that metformin induced substantial proteomic changes, especially in metabolic and mitochondrial pathways in the substantia nigra (SN)...
May 24, 2017: Oncotarget
https://www.readbyqxmd.com/read/28608291/iron-induced-generation-of-mitochondrial-ros-depends-on-ampk-activity
#11
Hui Huang, Jun Chen, Huiru Lu, Mengxue Zhou, Zhifang Chai, Yi Hu
Deregulated iron homeostasis is generally believed to be implicated in neurodegenerative diseases, including Parkinson's disease. Nevertheless, it is not fully understood how iron overload can elicit neuronal cell damage. Here we examined mitochondrial reactive oxygen species (ROS) levels in human dopaminergic neuroblastoma SH-SY5Y cells upon iron exposure. A relatively high concentration of iron could significantly increase mitochondrial ROS levels in SH-SY5Y cells. Pharmacological activation of AMP-activated protein kinase (AMPK) almost completely inhibited the effect of iron on mitochondrial ROS...
June 12, 2017: Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine
https://www.readbyqxmd.com/read/28598844/combustion-derived-nanoparticles-in-key-brain-target-cells-and-organelles-in-young-urbanites-culprit-hidden-in-plain-sight-in-alzheimer-s-disease-development
#12
Angélica González-Maciel, Rafael Reynoso-Robles, Ricardo Torres-Jardón, Partha S Mukherjee, Lilian Calderón-Garcidueñas
Millions of children and young adults are exposed to fine particulate matter (PM2.5) and ozone, associated with Alzheimer's disease (AD) risk. Mexico City (MC) children exhibit systemic and brain inflammation, low cerebrospinal fluid (CSF) Aβ1-42, breakdown of nasal, olfactory, alveolar-capillary, duodenal, and blood-brain barriers, volumetric and metabolic brain changes, attention and short-term memory deficits, and hallmarks of AD and Parkinson's disease. Airborne iron-rich strongly magnetic combustion-derived nanoparticles (CDNPs) are present in young urbanites' brains...
2017: Journal of Alzheimer's Disease: JAD
https://www.readbyqxmd.com/read/28589937/loss-of-parkinson-s-disease-associated-protein-chchd2-affects-mitochondrial-crista-structure-and-destabilizes-cytochrome-c
#13
Hongrui Meng, Chikara Yamashita, Kahori Shiba-Fukushima, Tsuyoshi Inoshita, Manabu Funayama, Shigeto Sato, Tomohisa Hatta, Tohru Natsume, Masataka Umitsu, Junichi Takagi, Yuzuru Imai, Nobutaka Hattori
Mutations in CHCHD2 have been identified in some Parkinson's disease (PD) cases. To understand the physiological and pathological roles of CHCHD2, we manipulated the expression of CHCHD2 in Drosophila and mammalian cells. The loss of CHCHD2 in Drosophila causes abnormal matrix structures and impaired oxygen respiration in mitochondria, leading to oxidative stress, dopaminergic neuron loss and motor dysfunction with age. These PD-associated phenotypes are rescued by the overexpression of the translation inhibitor 4E-BP and by the introduction of human CHCHD2 but not its PD-associated mutants...
June 7, 2017: Nature Communications
https://www.readbyqxmd.com/read/28585712/a-novel-non-apoptotic-role-of-procaspase-3-in-the-regulation-of-mitochondrial-biogenesis-activators
#14
Ji-Soo Kim, Ji-Young Ha, Sol-Ji Yang, Jin H Son
The executioner caspase-3 has been proposed as a pharmacological intervention target to preserve degenerating dopaminergic (DA) neurons because apoptotic mechanisms involving caspase-3 contribute, at least in part, to the loss of DA neurons in patients and experimental models of Parkinson's disease (PD). Here, we determined that genetic intervention of caspase-3 was sufficient to prevent cell death against oxidative stress (OS), accompanied by unexpected severe mitochondrial dysfunction. Specifically, as we expected, caspase-3-deficient DA neuronal cells were very significantly resistant to OS-induced cell death, while the activation of the initiator caspase-9 by OS was preserved...
June 6, 2017: Journal of Cellular Biochemistry
https://www.readbyqxmd.com/read/28580188/on-the-relationship-between-energy-metabolism-proteostasis-aging-and-parkinson-s-disease-possible-causative-role-of-methylglyoxal-and-alleviative-potential-of-carnosine
#15
REVIEW
Alan R Hipkiss
Recent research shows that energy metabolism can strongly influence proteostasis and thereby affect onset of aging and related disease such as Parkinson's disease (PD). Changes in glycolytic and proteolytic activities (influenced by diet and development) are suggested to synergistically create a self-reinforcing deleterious cycle via enhanced formation of triose phosphates (dihydroxyacetone-phosphate and glyceraldehyde-3-phosphate) and their decomposition product methylglyoxal (MG). It is proposed that triose phosphates and/or MG contribute to the development of PD and its attendant pathophysiological symptoms...
May 2017: Aging and Disease
https://www.readbyqxmd.com/read/28580093/photobiomodulation-and-the-brain-a-new-paradigm
#16
Madison Hennessy, Michael R Hamblin
Transcranial photobiomodulation (PBM) also known as low level laser therapy (tLLLT) relies on the use of red/NIR light to stimulate, preserve and regenerate cells and tissues. The mechanism of action involves photon absorption in the mitochondria (cytochrome c oxidase), and ion channels in cells leading to activation of signaling pathways, up-regulation of transcription factors, and increased expression of protective genes. We have studied PBM for treating traumatic brain injury (TBI) in mice using a NIR laser spot delivered to the head...
January 2017: Journal of Optics
https://www.readbyqxmd.com/read/28565770/dose-dependent-effect-of-curcuma-longa-for-the-treatment-of-parkinson-s-disease
#17
Xiao-Wei Ma, Rui-You Guo
Curcuma longa is a plant that belongs to the ginger family, Zingiberaceae. It has been used in Siddha medicine for thousands of years in Asia. Parkinson's disease (PD) is a degenerative disorder of the central nervous system that affects the motor system of the brain. Death of dopamine-producing cells in the substantia nigra leads to PD. Exposure to salsolinol, which is an endogenous neurotoxin, has been associated with damage to dopamine-producing cells. The present study assessed the toxicity of salsolinol in SH-SY5Y human neuroblastoma cells and subsequently investigated the neuroprotective potential of C...
May 2017: Experimental and Therapeutic Medicine
https://www.readbyqxmd.com/read/28564592/alteration-of-mitochondrial-protein-pdha1-in-lewy-body-disease-and-park14
#18
Yasuo Miki, Kunikazu Tanji, Fumiaki Mori, Akiyoshi Kakita, Hitoshi Takahashi, Koichi Wakabayashi
The histopathological hallmark of Parkinson's disease (PD) and dementia with Lewy bodies (DLB) is the occurrence of insoluble fibrillary aggregates known as Lewy bodies. Mitochondria play a vital role in energy production, and the pathogenesis of PD is associated with altered cellular metabolism due to mitochondrial dysfunction. The pyruvate dehydrogenase (PDH) complex provides a primary step in aerobic glucose metabolism by catalyzing the oxidative decarboxylation of pyruvate to acetyl CoA. Pyruvate dehydrogenase alpha 1 (PDHA1) forms the core structure of the PDH complex...
May 28, 2017: Biochemical and Biophysical Research Communications
https://www.readbyqxmd.com/read/28556983/pink1-regulates-mitochondrial-trafficking-in-dendrites-of-cortical-neurons-through-mitochondrial-pka
#19
Tania DasBanerjee, Raul Y Dagda, Marisela Dagda, Charleen T Chu, Monica Rice, Emmanuel Vazquez-Mayorga, Ruben K Dagda
Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling, and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons...
May 30, 2017: Journal of Neurochemistry
https://www.readbyqxmd.com/read/28554311/the-role-of-sigma-1-receptor-an-intracellular-chaperone-in-neurodegenerative-diseases
#20
Botond Penke, Lívia Fülöp, Mária Szűcs, Ede Frecska
Widespread protein aggregation occurs in the living system under stress or during aging, owing to disturbance of endoplasmic reticulum (ER) proteostasis. Many neurodegenerative diseases may have a common mechanism: the failure of protein homeostasis. Perturbation of ER results in unfolded protein response (UPR). Prolonged chronical UPR may activate apoptotic pathways and cause cell death. ER is associated to mitochondria by the mitochondria-associated ER-membrane, MAM. The sigma-1 receptor (Sig-1R), a well-known ER-chaperone localizes in the MAM...
May 28, 2017: Current Neuropharmacology
keyword
keyword
85731
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"