Read by QxMD icon Read

GBA synuclein

S Pchelina, A Emelyanov, G Baydakova, P Andoskin, K Senkevich, M Nikolaev, I Miliukhina, A Yakimovskii, A Timofeeva, E Fedotova, N Abramycheva, T Usenko, D Kulabukhova, A Lavrinova, A Kopytova, L Garaeva, E Nuzhnyi, S Illarioshkin, E Zakharova
Alpha-synuclein oligomerization plays a key role in the development of Parkinson's disease (PD). Being the most common genetic contributor to PD, glucocerebrosidase 1 (GBA) mutations have been associated with decreased GBA enzymatic activity in PD patients with mutations in the GBA gene (GBA-PD). However, it is unknown whether the activities of other lysosomal hydrolases are being altered in GBA-PD patients and are accompanied by an increase in alpha-synuclein oligomerization. The aim of our study was to estimate GBA enzymatic activity as well as the activities of five other lysosomal hydrolases (galactocerebrosidase, alpha-glucosidase, alpha-galactosidase, sphingomyelinase, alpha-iduronidase) in dried blood spots with assessing plasma oligomeric alpha-synuclein levels in sporadic PD (sPD) patients, in GBA-PD patients and in controls...
October 22, 2016: Neuroscience Letters
Bruno A Benitez, Albert A Davis, Sheng Chih Jin, Laura Ibanez, Sara Ortega-Cubero, Pau Pastor, Jiyoon Choi, Breanna Cooper, Joel S Perlmutter, Carlos Cruchaga
BACKGROUND: Most sequencing studies in Parkinson's disease (PD) have focused on either a particular gene, primarily in familial and early onset PD samples, or on screening single variants in sporadic PD cases. To date, there is no systematic study that sequences the most common PD causing genes with Mendelian inheritance [α-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2), PARKIN, PTEN-induced putative kinase 1 (PINK1) and DJ-1 (Daisuke-Junko-1)] and susceptibility genes [glucocerebrosidase beta acid (GBA) and microtubule-associated protein tau (MAPT)] identified through genome-wide association studies (GWAS) in a European-American case-control sample (n=815)...
2016: Molecular Neurodegeneration
Cynthia A Kelm-Nelson, Sharon A Stevenson, Michelle R Ciucci
Vocal communication deficits are common in Parkinson disease (PD). Widespread alpha-synuclein pathology is a common link between familial and sporadic PD, and recent genetic rat models based on familial genetic links increase the opportunity to explore vocalization deficits and their associated neuropathologies. Specifically, the Pink1 knockout (-/-) rat presents with early, progressive motor deficits, including significant vocal deficits, at 8 months of age. Moreover, this rat model exhibits alpha-synuclein pathology compared to age-matched non-affected wildtype (WT) controls...
May 16, 2016: Neuroscience Letters
Ivanka Marković, Nikola Kresojević, Vladimir S Kostić
Both homo- (causing autosomal-recessive Gaucher's disease; GD) and heterozygous mutations in the glucocerebrosidase gene (GBA) are associated with Parkinson's disease (PD), and represent the most robust known genetic susceptibility factors identified in PD. Since the accumulation of α-synuclein has been considered critical to the pathogenesis of PD among several possible pathways through which glucocerebrosidase (GCase) deficiency may promote the pathogenesis of PD, particular attention was given to the reciprocity with α-synuclein levels, lysosomal dysfunction, endoplasmatic reticulum-Golgi trafficking of GCase, dysregulation of calcium homeostasis and mitochondrial abnormalities...
May 2016: Journal of Neurology
Lluïsa Vilageliu, Daniel Grinberg
Gaucher disease is an autosomal recessive lysosomal storage disorder, caused by mutations in the GBA gene. The frequency of Gaucher disease patients and heterozygote carriers that developed Parkinson disease has been found to be above that of the control population. This fact suggests that mutations in the GBA gene can be involved in Parkison's etiology. Analysis of large cohorts of patients with Parkinson disease has shown that there are significantly more cases bearing GBA mutations than those found among healthy individuals...
March 10, 2016: Current Protein & Peptide Science
Fernando Cardona, Jordi Pérez-Tur
In order to explain the molecular causes of Parkinson's Disease (PD) it is important to understand the effect that mutations described as causative of the disease have at the functional level. In this special issue, several authors have been reviewing the effects in PD and other parkinsonisms of mutations described in LRRK2, α-synuclein, PINK1-Parkin-DJ-1, UCHL1, ATP13A2, GBA, VPS35, FBOX7 and HTRA2. In this review, we compile the knowledge about other proteins with a more general role in neurodegenerative diseases (MAPT) or for which less data is available due to its recent discovery (EIF4G1, DNAJC13), the lack of structural or functional data (as for PLA2G6 or DNAJC6), or even their doubtful association with the disease (as for GIGYF2, SYNJ1 and SPR)...
March 11, 2016: Current Protein & Peptide Science
Hugo J R Fernandes, Elizabeth M Hartfield, Helen C Christian, Evangelia Emmanoulidou, Ying Zheng, Heather Booth, Helle Bogetofte, Charmaine Lang, Brent J Ryan, S Pablo Sardi, Jennifer Badger, Jane Vowles, Samuel Evetts, George K Tofaris, Kostas Vekrellis, Kevin Talbot, Michele T Hu, William James, Sally A Cowley, Richard Wade-Martins
Heterozygous mutations in the glucocerebrosidase gene (GBA) represent the strongest common genetic risk factor for Parkinson's disease (PD), the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC) lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles...
March 8, 2016: Stem Cell Reports
Ji-Feng Kang, Bei-Sha Tang, Ji-Feng Guo
In recent years, induced pluripotent stem cells (iPSCs) were widely used for investigating the mechanisms of Parkinson's disease (PD). Somatic cells from patients with SNCA (α-synuclein), LRRK2 (leucine-rich repeat kinase 2), PINK1 (PTEN induced putative kinase 1), Parkin mutations, and at-risk individuals carrying GBA (β-glucocerebrosidase) mutations have been successfully induced to iPSCs and subsequently differentiated into dopaminergic (DA) neurons. Importantly, some PD-related cell phenotypes, including α-synuclein aggregation, mitophagy, damaged mitochondrial DNA, and mitochondrial dysfunction, have been described in these iPSCs models, which further investigated the pathogenesis of PD...
2016: Stem Cells International
Matthew E Gegg, Anthony H V Schapira
The lysosomal hydrolase glucocerebrosidase (GCase) is encoded for by the GBA gene. Homozygous GBA mutations cause Gaucher disease (GD), a lysosomal storage disorder. Furthermore, homozygous and heterozygous GBA mutations are numerically the greatest genetic risk factor for developing Parkinson's disease (PD), the second most common neurodegenerative disorder. The loss of GCase activity results in impairment of the autophagy-lysosome pathway (ALP), which is required for the degradation of macromolecules and damaged organelles...
June 2016: Neurobiology of Disease
Ting-Ting Du, Le Wang, Chun-Li Duan, Ling-Ling Lu, Jian-Liang Zhang, Ge Gao, Xiao-Bo Qiu, Xiao-Min Wang, Hui Yang
Loss-of-function mutations in the gene encoding GBA (glucocerebrosidase, β, acid), the enzyme deficient in the lysosomal storage disorder Gaucher disease, elevate the risk of Parkinson disease (PD), which is characterized by the misprocessing of SNCA/α-synuclein. However, the mechanistic link between GBA deficiency and SNCA accumulation remains poorly understood. In this study, we found that loss of GBA function resulted in increased levels of SNCA via inhibition of the autophagic pathway in SK-N-SH neuroblastoma cells, primary rat cortical neurons, or the rat striatum...
2015: Autophagy
Carmen Noelker, Lixia Lu, Matthias Höllerhage, Franca Vulinovic, Annekathrin Sturn, René Roscher, Günter U Höglinger, Etienne C Hirsch, Wolfgang H Oertel, Daniel Alvarez-Fischer, Hartmann Andreas
Gaucher disease is an autosomal recessive disease, caused by a lack or functional deficiency of the lysosomal enzyme, glucocerebrosidase (GCase). Recently, mutations in the glucocerebrosidase gene (GBA) have been associated with Parkinson's disease (PD) and GBA mutations are now considered the most important genetic vulnerability factor for PD. In this study, we have investigated (i) in vivo whether inhibition of the enzyme glucosylceramide synthase by miglustat may protect C57Bl/6 mice against subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication and (ii) in vitro whether a decrease of GCase activity may render dopaminergic neurons susceptible to MPP(+) (1-methyl-4-phenylpyridinium) or alpha-synuclein (α-Syn) toxicity and amenable to miglustat treatment...
September 15, 2015: Journal of the Neurological Sciences
Matthew E Gegg, Lindsay Sweet, Bing H Wang, Lamya S Shihabuddin, Sergio Pablo Sardi, Anthony H V Schapira
BACKGROUND: To establish whether Parkinson's disease (PD) brains previously described to have decreased glucocerebrosidase activity exhibit accumulation of the lysosomal enzyme's substrate, glucosylceramide, or other changes in lipid composition. METHODS: Lipidomic analyses and cholesterol measurements were performed on the putamen (n = 5-7) and cerebellum (n = 7-14) of controls, Parkinson's disease brains with heterozygote GBA1 mutations (PD+GBA), or sporadic PD...
July 2015: Movement Disorders: Official Journal of the Movement Disorder Society
Evgenii Nuzhnyi, Anton Emelyanov, Tatyana Boukina, Tatiana Usenko, Andrey Yakimovskii, Ekaterina Zakharova, Sofya Pchelina
BACKGROUND: The link between Parkinson's disease (PD) and Gaucher disease (GD), the most common lysosomal storage disease associated with loss of glucocerebrosidase (GBA) activity, can be explained by abnormal accumulation of oligomeric alpha-synuclein (α-Syn) species resulting from mutations in the GBA gene. However, in GD, the relationship between GBA activity and α-Syn accumulation in biological fluids has not been investigated. METHODS: We analyzed plasma oligomeric α-Syn levels, leucocyte GBA activity, and plasma chitotriosidase activity in 21 patients with GD...
June 2015: Movement Disorders: Official Journal of the Movement Disorder Society
Davide Chiasserini, Silvia Paciotti, Paolo Eusebi, Emanuele Persichetti, Anna Tasegian, Marzena Kurzawa-Akanbi, Patrick F Chinnery, Christopher M Morris, Paolo Calabresi, Lucilla Parnetti, Tommaso Beccari
BACKGROUND: Lysosomal dysfunction is thought to be a prominent feature in the pathogenetic events leading to Parkinson's disease (PD). This view is supported by the evidence that mutations in GBA gene, coding the lysosomal hydrolase β-glucocerebrosidase (GCase), are a common genetic risk factor for PD. Recently, GCase activity has been shown to be decreased in substantia nigra and in cerebrospinal fluid of patients diagnosed with PD or dementia with Lewy Bodies (DLB). Here we measured the activity of GCase and other endo-lysosomal enzymes in different brain regions (frontal cortex, caudate, hippocampus, substantia nigra, cerebellum) from PD (n = 26), DLB (n = 16) and age-matched control (n = 13) subjects, screened for GBA mutations...
2015: Molecular Neurodegeneration
Norihito Uemura, Masato Koike, Satoshi Ansai, Masato Kinoshita, Tomoko Ishikawa-Fujiwara, Hideaki Matsui, Kiyoshi Naruse, Naoaki Sakamoto, Yasuo Uchiyama, Takeshi Todo, Shunichi Takeda, Hodaka Yamakado, Ryosuke Takahashi
Homozygous mutations in the glucocerebrosidase (GBA) gene result in Gaucher disease (GD), the most common lysosomal storage disease. Recent genetic studies have revealed that GBA mutations confer a strong risk for sporadic Parkinson's disease (PD). To investigate how GBA mutations cause PD, we generated GBA nonsense mutant (GBA-/-) medaka that are completely deficient in glucocerebrosidase (GCase) activity. In contrast to the perinatal death in humans and mice lacking GCase activity, GBA-/- medaka survived for months, enabling analysis of the pathological progression...
April 2015: PLoS Genetics
Yaqiong Li, Ping Li, Huimin Liang, Zhiquan Zhao, Makoto Hashimoto, Jianshe Wei
Gaucher disease is associated with Parkinson's disease (PD) by mutations in glucocerebrosidase (GCase). The gene encoding GCase, glucosidase beta acid (GBA), is an important risk factor for PD. Findings from large studies have shown that patients with PD have an increased frequency of mutations in GBA and that GBA mutation carriers exhibit diverse parkinsonian phenotypes and Lewy body pathology. Although the mechanism for this association remains elusive, some hypotheses have been proposed to explain it, including gain of function caused by GBA mutations, which increases α-synuclein (α-syn) aggregation, loss of function due to lysosomal enzyme deficiency, which affects α-syn clearance, and even a bidirectional feedback loop, but each of these hypotheses has its limitations...
August 2015: Cellular and Molecular Neurobiology
Anthony H V Schapira
Mutations of the glucocerebrosidase (GBA) gene are the most important risk factor yet discovered for Parkinson disease (PD). Homozygous GBA mutations result in Gaucher disease (GD), a lysosomal storage disorder. Heterozygous mutations have not until recently been thought to be associated with any pathological process. However, it is clear that the presence of a GBA mutation in homozygous or heterozygous form is associated with an approximately 20-fold increase in the risk for PD, with little if any difference in risk burden related to gene dose...
May 2015: Molecular and Cellular Neurosciences
Diego Romo-Gutiérrez, Petra Yescas, Marisol López-López, Marie-Catherine Boll
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. Dementia is a frequent complication of idiopathic Parkinsonism or PD, usually occurring later in the protracted course of the illness. Some risk factors to develop dementia in PD are aging, severe Parkinson´s symptoms, rigid-akinetic form, hallucinations, and mild cognitive impairment documented at the first examinations. It is not yet clear if some genetic factors are either risk or protector for progression to dementia...
January 2015: Gaceta Médica de México
Rebecca M Perrett, Zoi Alexopoulou, George K Tofaris
Parkinson's disease is primarily a movement disorder with predilection for the nigral dopaminergic neurons and is often associated with widespread neurodegeneration and diffuse Lewy body deposition. Recent advances in molecular genetics and studies in model organisms have transformed our understanding of Parkinson's pathogenesis and suggested unifying biochemical pathways despite the clinical heterogeneity of the disease. In this review, we summarized the evidence that a number of Parkinson's associated genetic mutations or polymorphisms (LRRK2, VPS35, GBA, ATP13A2, ATP6AP2, DNAJC13/RME-8, RAB7L1, GAK) disrupt protein trafficking and degradation via the endosomal pathway and discussed how such defects could arise from or contribute to the accumulation and misfolding of α-synuclein in Lewy bodies...
May 2015: Molecular and Cellular Neurosciences
Filippo Vairo, Fernanda Sperb-Ludwig, Matheus Wilke, Kristiane Michellin-Tirelli, Cristina Netto, Eurico Camargo Neto, Ida Vanessa Doederlein Schwartz
Mutations in the GBA gene are related to an increased risk of developing neurodegenerative diseases. The exact molecular mechanisms involved in the interaction between GBA and α-synuclein, a protein that has been associated with several neurological diseases, remain unsolved. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is important for the normal development of the peripheral and central nervous system, and it plays a key role in neuronal survival and synaptic plasticity in the adult brain...
January 15, 2015: Journal of Neuroimmunology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"