Read by QxMD icon Read

In vivo patch clamp recording

Edyta K Bichler, Courtney C Elder, Paul S García
Antibiotics are used in the treatment and prevention of bacterial infections, but effects on neuron excitability have been documented. A recent study demonstrated that clarithromycin alleviates daytime sleepiness in hypersomnia patients (Trotti et al. 2014). To explore the potential application of clarithromycin as a stimulant, we performed whole cell patch clamp recordings in rat pyramidal cells from the CA3 region of hippocampus. In the presence of the antibiotic, rheobase current was reduced by 50%, F-I relationship (number of action potentials as a function of injected current) was shifted to the left, and the resting membrane potential was more depolarized...
October 12, 2016: Journal of Neurophysiology
I Kolb, W A Stoy, E B Rousseau, O A Moody, A Jenkins, C R Forest
Patch-clamp recording has enabled single-cell electrical, morphological and genetic studies at unparalleled resolution. Yet it remains a laborious and low-throughput technique, making it largely impractical for large-scale measurements such as cell type and connectivity characterization of neurons in the brain. Specifically, the technique is critically limited by the ubiquitous practice of manually replacing patch-clamp pipettes after each recording. To circumvent this limitation, we developed a simple, fast, and automated method for cleaning glass pipette electrodes that enables their reuse within one minute...
October 11, 2016: Scientific Reports
Sophie Le Page, Marjorie Niro, Jérémy Fauconnier, Laura Cellier, Sophie Tamareille, Abdallah Gharib, Arnaud Chevrollier, Laurent Loufrani, Céline Grenier, Rima Kamel, Emmanuelle Sarzi, Alain Lacampagne, Michel Ovize, Daniel Henrion, Pascal Reynier, Guy Lenaers, Delphine Mirebeau-Prunier, Fabrice Prunier
BACKGROUND: Recent data suggests the involvement of mitochondrial dynamics in cardiac ischemia/reperfusion (I/R) injuries. Whilst excessive mitochondrial fission has been described as detrimental, the role of fusion proteins in this context remains uncertain. OBJECTIVES: To investigate whether Opa1 (protein involved in mitochondrial inner-membrane fusion) deficiency affects I/R injuries. METHODS AND RESULTS: We examined mice exhibiting Opa1delTTAG mutations (Opa1+/-), showing 70% Opa1 protein expression in the myocardium as compared to their wild-type (WT) littermates...
2016: PloS One
Anne Tscherter, Martina Heidemann, Sonja Kleinlogel, Jürg Streit
Presently there exists no cure for spinal cord injury (SCI). However, transplantation of embryonic tissue into spinal cord (SC) lesions resulted in axon outgrowth across the lesion site and some functional recovery, fostering hope for future stem cell therapies. Although in vivo evidence for functional recovery is given, the exact cellular mechanism of the graft support remains elusive: either the grafted cells provide a permissive environment for the host tissue to regenerate itself or the grafts actually integrate functionally into the host neuronal network reconnecting the separated SC circuits...
2016: Frontiers in Cellular Neuroscience
Javier E Stern, Sookjin Son, Vinicia C Biancardi, Hong Zheng, Neeru Sharma, Kaushik P Patel
Angiotensin II (AngII) is a key neuropeptide that acting within the brain hypothalamic paraventricular nucleus regulates neurohumoral outflow to the circulation. Moreover, an exacerbated AngII action within the paraventricular nucleus contributes to neurohumoral activation in hypertension. Although AngII effects involve changes in paraventricular nucleus neuronal activity, the precise underlying mechanisms, cellular targets, and distribution of AngII receptors within the paraventricular nucleus remain largely unknown...
October 3, 2016: Hypertension
Yao Wang, Yu-Zhang Liu, Shi-Yi Wang, Zhiru Wang
As a critical technique for dissection of synaptic and cellular mechanisms, whole-cell patch-clamp recording has become feasible for in vivo preparations including both anaesthetized and awake mammalian brains. However, compared with in vitro whole-cell recording, in vivo whole-cell recording often suffers from low success rates and high access resistance, preventing its wide application in physiological analysis of neural circuits. Here, we describe experimental procedures for achieving in vivo amphotericin B-perforated whole-cell recording as well as conventional (breakthrough) whole-cell recording from rats and mice...
September 29, 2016: Molecular Brain
Veronica J Cerpa, Yuanming Wu, Eduardo Bravo, Frida A Teran, Rachel S Flynn, George B Richerson
Serotonin (5-HT) neurons contribute to respiratory chemoreception in adult mice, but it is unclear whether they play a similar role in neonatal mice. We studied breathing during development in Lmx1b(f/f/p) mice, which lack 5-HT neurons. From postnatal days 1-7 (P1-P7), ventilation of Lmx1b(f/f/p) mice breathing room air was 50% of WT mice (p < 0.001). By P12, baseline ventilation increased to a level equal to WT mice. In contrast, the hypercapnic ventilatory response (HCVR) of neonatal Lmx1b(f/f/p) and WT mice were equal to each other, but were both much less than adult WT mice...
September 9, 2016: Neuroscience
Tom P Franken, Philip H Smith, Philip X Joris
The lateral nucleus of the trapezoid body (LNTB) is a prominent nucleus in the superior olivary complex in mammals including humans. Its physiology in vivo is poorly understood due to a paucity of recordings. It is thought to provide a glycinergic projection to the medial superior olive (MSO) with an important role in binaural processing and sound localization. We combined in vivo patch clamp recordings with labeling of individual neurons in the Mongolian gerbil. Labeling of the recorded neurons allowed us to relate physiological properties to anatomy at the light and electron microscopic level...
2016: Frontiers in Neural Circuits
Mei-Lin Shen, Chen-Hung Wang, Ching-Huei Lin, Ning Zhou, Shung-Te Kao, Dong Chuan Wu
Airway mucus overproduction is one of the most common symptoms of asthma that causes severe clinical outcomes in patients. Despite the effectiveness of general asthma therapies, specific treatments that prevent mucus overproduction in asthma patients remain lacking. Recent studies have found that activation of GABAA receptors (GABAAR) is important for promoting mucus oversecretion in lung airway epithelia. Here, we report that luteolin, a natural flavonoid compound, suppresses mucus overproduction by functionally inhibiting the GABAergic system...
2016: Scientific Reports
Fei Yang, Qian Xu, Bin Shu, Vinod Tiwari, Shao-Qiu He, Louis P Vera-Portocarrero, Xinzhong Dong, Bengt Linderoth, Srinivasa N Raja, Yun Wang, Yun Guan
Activation of Aβ-fibers is an intrinsic feature of spinal cord stimulation (SCS) pain therapy. Cannabinoid receptor type 1 (CB1) is important to neuronal plasticity and pain modulation, but its role in SCS-induced pain inhibition remains unclear. In this study, we showed that CB1 receptors are expressed in both excitatory and inhibitory interneurons in substantia gelatinosa (SG). Patch-clamp recording of the evoked excitatory postsynaptic currents (eEPSCs) in mice after spinal nerve ligation (SNL) showed that electrical stimulation of Aβ-fibers (Aβ-ES) using clinical SCS-like parameters (50 Hz, 0...
November 2016: Pain
Yuji Kozuka, Mikito Kawamata, Hidemasa Furue, Takashi Ishida, Satoshi Tanaka, Akiyoshi Namiki, Michiaki Yamakage
BACKGROUND: After spinal cord injury, central neuropathic pain develops in the majority of spinal cord injury patients. Spinal hemisection in rats, which has been developed as an animal model of spinal cord injury in humans, results in hyperexcitation of spinal dorsal horn neurons soon after the hemisection and thereafter. The hyperexcitation is likely caused by permanent elimination of the descending pain systems. We examined the change in synaptic transmission of substantia gelatinosa neurons following acute spinal hemisection by using an in vivo whole-cell patch-clamp technique...
2016: Molecular Pain
Lina Yassin, Michael Pecka, Jasmin Kajopoulos, Helge Gleiss, Lu Li, Christian Leibold, Felix Felmy
The identification and characterization of organization principals is essential for the understanding of neural function of brain areas. The inferior colliculus (IC) represents a midbrain nexus involved in numerous aspects of auditory processing. Likewise, neurons throughout the IC are tuned to a diverse range of specific stimulus features. Yet beyond a topographic arrangement of the cochlea-inherited frequency tuning, the functional organization of the IC is not well understood. Particularly, a common principle that links the diverse tuning characteristics is unknown...
August 17, 2016: Hearing Research
Mao-Cheng Wu, Yan-Hua Bing, Chun-Ping Chu, De-Lai Qiu
Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148...
2016: Scientific Reports
Can Tao, Guangwei Zhang, Chang Zhou, Lijuan Wang, Sumei Yan, Li I Zhang, Yi Zhou, Ying Xiong
Cortical neurons can exhibit significant variation in their responses to the same sensory stimuli, as reflected by the reliability and temporal precision of spikes. However the synaptic mechanism underlying response variation still remains unclear. Here, in vivo whole-cell patch-clamp recording of excitatory neurons revealed variation in the amplitudes as well as the temporal profiles of excitatory and inhibitory synaptic inputs evoked by the same sound stimuli in layer 4 of the rat primary auditory cortex...
2016: Scientific Reports
Monika Woźniak, Krystyna Gołembiowska, Karolina Noworyta-Sokołowska, Francine Acher, Paulina Cieślik, Magdalena Kusek, Krzysztof Tokarski, Andrzej Pilc, Joanna M Wierońska
LSP4-2022 is a novel, orthosteric agonist of mGlu4 receptor that induces antipsychotic-like activity in animal studies. In the present study, the involvement of 5-HT1A receptors in LSP4-2022-induced antipsychotic actions and the neurochemical background of that interaction were investigated. In several behavioral tests the actions of effective doses of the compound (0.5-2 mg/kg) were antagonized via the administration of the 5-HT1A antagonist WAY100635 (0.1 mg/kg). The co-administration of sub-effective dose of the 5-HT1A agonist (R)-(S)-8-OH+DPAT (0...
July 24, 2016: Neuropharmacology
Rong-Wei Zhang, Jiu-Lin Du
Zebrafish (Danio rerio) is a newly emerged vertebrate animal model with a conserved gross architecture of the brain and a rich repertoire of behaviors. Due to the optical transparency and structural simplicity of its brain, larval zebrafish has become an ideal in vivo model for dissecting neural mechanisms of brain functions at a whole-brain scale based on a strategy that spans scales from synapses, neurons, and circuits to behaviors. Whole-cell patch-clamp recording is an indispensable approach for studying synaptic and circuit mechanisms of brain functions...
2016: Methods in Molecular Biology
Christian Vogl, Iliana Panou, Gulnara Yamanbaeva, Carolin Wichmann, Sara J Mangosing, Fabio Vilardi, Artur A Indzhykulian, Tina Pangršič, Rosamaria Santarelli, Montserrat Rodriguez-Ballesteros, Thomas Weber, Sangyong Jung, Elena Cardenas, Xudong Wu, Sonja M Wojcik, Kelvin Y Kwan, Ignacio Del Castillo, Blanche Schwappach, Nicola Strenzke, David P Corey, Shuh-Yow Lin, Tobias Moser
The transmembrane recognition complex (TRC40) pathway mediates the insertion of tail-anchored (TA) proteins into membranes. Here, we demonstrate that otoferlin, a TA protein essential for hair cell exocytosis, is inserted into the endoplasmic reticulum (ER) via the TRC40 pathway. We mutated the TRC40 receptor tryptophan-rich basic protein (Wrb) in hair cells of zebrafish and mice and studied the impact of defective TA protein insertion. Wrb disruption reduced otoferlin levels in hair cells and impaired hearing, which could be restored in zebrafish by transgenic Wrb rescue and otoferlin overexpression...
July 25, 2016: EMBO Journal
Negah Rahmati, Maria Fernanda Vinueza Veloz, Jie Xu, Sharon Barone, Nahuel Rodolfo Ben Hamida, Martijn Schonewille, Freek E Hoebeek, Manoocher Soleimani, Chris I De Zeeuw
Chloride homeostasis determines the impact of inhibitory synaptic transmission and thereby mediates the excitability of neurons. Even though cerebellar Purkinje cells (PCs) receive a pronounced inhibitory GABAergic input from stellate and basket cells, the role of chloride homeostasis in these neurons is largely unknown. Here we studied at both the cellular and systems physiological level the function of a recently discovered chloride channel, SLC26A11 or kidney brain anion transporter (KBAT), which is prominently expressed in PCs...
May 2016: ENeuro
Catherine A Eichel, Adeline Beuriot, Morgan Y E Chevalier, Jean-Sébastien Rougier, Florent Louault, Gilles Dilanian, Julien Amour, Alain Coulombe, Hugues Abriel, Stéphane N Hatem, Elise Balse
RATIONALE: Mechanisms underlying membrane protein localization are crucial in the proper function of cardiac myocytes. The main cardiac sodium channel, NaV1.5, carries the sodium current (INa) that provides a rapid depolarizing current during the upstroke of the action potential. Although enriched in the intercalated disc, NaV1.5 is present in different membrane domains in myocytes and interacts with several partners. OBJECTIVE: To test the hypothesis that the MAGUK (membrane-associated guanylate kinase) protein CASK (calcium/calmodulin-dependent serine protein kinase) interacts with and regulates NaV1...
August 5, 2016: Circulation Research
Amir Segev, Francisco Garcia-Oscos, Saïd Kourrich
Whole-cell patch-clamp recording is an electrophysiological technique that allows the study of the electrical properties of a substantial part of the neuron. In this configuration, the micropipette is in tight contact with the cell membrane, which prevents current leakage and thereby provides more accurate ionic current measurements than the previously used intracellular sharp electrode recording method. Classically, whole-cell recording can be performed on neurons in various types of preparations, including cell culture models, dissociated neurons, neurons in brain slices, and in intact anesthetized or awake animals...
2016: Journal of Visualized Experiments: JoVE
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"