Read by QxMD icon Read

serotonin and central amygdala

Teng Teng, Afsaneh Gaillard, Aude Muzerelle, Patricia Gaspar
Serotonin (5-HT) neurotransmission in the brain relies on a widespread axon terminal network originating from the hindbrain raphe nuclei. These projections are topographically organized such that the dorsal (DR), and median raphe (MnR) nuclei have different brain targets. However, the guidance molecules involved in this selective targeting in development are unknown. Here, we show the implication of ephrinA5 signaling in this process. We find that the EphA5 gene is selectively expressed in a subset of 5-HT neurons during embryonic and postnatal development...
January 2017: ENeuro
Jessica A Waller, Joseph A Tamm, Aicha Abdourahman, Alan L Pehrson, Yan Li, Manuel Cajina, Connie Sánchez
The multimodal antidepressant vortioxetine displays an antidepressant profile distinct from those of conventional selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) and possesses cognitive-enhancing properties in preclinical and clinical studies. Recent studies have begun to investigate molecular mechanisms that may differentiate vortioxetine from other antidepressants. Acute studies in adult rats and chronic studies in a middle-aged mouse model reveal upregulation of several markers that play a central role in synaptic plasticity...
February 2017: European Neuropsychopharmacology: the Journal of the European College of Neuropsychopharmacology
Guangchen Ji, Wei Zhang, Lenin Mahimainathan, Madhusudhanan Narasimhan, Takaki Kiritoshi, Xiuzhen Fan, Jigong Wang, Thomas A Green, Volker Neugebauer
Neuroplasticity in the amygdala drives pain-related behaviors. The central nucleus (CeA) serves major amygdala output functions and can generate emotional-affective behaviors and modulate nocifensive responses. The CeA receives excitatory and inhibitory inputs from the basolateral nucleus (BLA) and serotonin receptor subtype 5-HT2CR in the BLA, but not CeA, has been implicated anxiogenic behaviors and anxiety disorders. Here, we tested the hypothesis that 5-HT2CR in the BLA plays a critical role in CeA plasticity and neuropathic pain behaviors in the rat spinal nerve ligation (SNL) model...
February 8, 2017: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Kanji Yoshimoto, Masataka Nagao, Yoshihisa Watanabe, Takashi Yamaguchi, Shuichi Ueda, Yoshihisa Kitamura, Kaneyasu Nishimura, Masatoshi Inden, Yoshinori Marunaka, Hiroyuki Hattori, Kaori Murakami, Megumi Tokaji, Kozo Ochi
Central ghrelin is required for the rewarding properties of drug abuse. We investigated whether alcohol affects ghrelinergic, dopaminergic, and serotoninergic neurons and growth hormone secretagogue receptor 1A (GHS-R1A) levels in the reward system of the brain. Alcohol-naïve C57BL/6J mice received 2g/kg ethanol (EtOH) intraperitoneally (i.p.). Plasma ghrelin levels decreased between 1 and 4h. We investigated the effects of EtOH administration on plasma ghrelin levels in two different animal models at 1, 3, and 10months of age...
February 2017: Pharmacology, Biochemistry, and Behavior
Patrick Eisner, Martin Klasen, Dhana Wolf, Klaus Zerres, Thomas Eggermann, Albrecht Eisert, Mikhail Zvyagintsev, Pegah Sarkheil, Krystyna A Mathiak, Florian Zepf, Klaus Mathiak
INTRODUCTION: A gene-environment interaction between expression genotypes of the monoamine oxidase A (MAOA) and adverse childhood experience increases the risk of antisocial behavior. However, the neural underpinnings of this interaction remain uninvestigated. A cortico-limbic circuit involving the prefrontal cortex (PFC) and the amygdala is central to the suppression of aggressive impulses and is modulated by serotonin (5-HT). MAOA genotypes may modulate the vulnerability of this circuit and increase the risk for emotion regulation deficits after specific life events...
December 9, 2016: Human Brain Mapping
Yimin Qiu, Dongmei Chen, Xiaojing Huang, Lina Huang, Liang Tang, Jihong Jiang, Lianhua Chen, Shitong Li
BACKGROUND: Limited surveys have assessed the performance of 5-hydroxytreptamine receptor 1A and its antagonist WAY-100635 in pharmacological manipulations targeting delirium therapies. The purpose of this paper was to assess the central pharmacological activity of WAY-100635 in a rat model of scopolamine-induced delirium and its underlying mechanism. RESULTS: A delirium rat model was established by intraperitoneal injection of scopolamine and behavioral changes evaluated through open field and elevated plus maze experiments...
October 19, 2016: BMC Neuroscience
Ryota Tokunaga, Rie Shimoju, Hideshi Shibata, Mieko Kurosawa
Noxious cutaneous stimulation increases, whereas innocuous cutaneous stimulation decreases serotonin (5-HT) release in the central nucleus of the amygdala (CeA) in anesthetized rats. In the present study, we investigated the contribution of corticotropin releasing factor (CRF) receptors and gamma-aminobutyric acid (GABA) receptors in the dorsal raphe nucleus (DRN) to those responses. Release of 5-HT in the CeA was monitored by microdialysis before and after 10-min stimulation by pinching or stroking. Increased 5-HT release in the CeA in response to pinching was abolished by CRF2 receptor antagonism in the DRN...
October 15, 2016: Journal of Physiological Sciences: JPS
Laura Arroyo, Ricard Carreras, Daniel Valent, Raquel Peña, Eva Mainau, Antonio Velarde, Josefa Sabrià, Anna Bassols
Chemical neurotransmitters (NT) are principal actors in all neuronal networks of animals. The central nervous system plays an important role in stress susceptibility and organizes the response to a stressful situation through the interaction of the dopaminergic and the serotonergic pathways, leading to the activation of the hypothalamus-pituitary-adrenal axis (HPA). This study was designed to investigate: a) the effects of stressful handling of pigs at the slaughterhouse on the neurotransmitter profile in four brain areas: amygdala, prefrontal cortex (PFC), hippocampus and hypothalamus, and b) whether the alterations in the brain NT profile after stressful handling were associated with fear, determined by the tonic immobility (TI) test...
December 1, 2016: Physiology & Behavior
Toshiyasu Matsui, Takahiro Nakata, Yasushi Kobayashi
Organic cation transporters (OCTs) are low-affinity, high-capacity carriers that mediate sodium-independent transport for biogenic cations, including catecholamine, serotonin, histamine, and choline/acetylcholine. Among them, OCT2 is expressed in neurons of the central nervous system. Although previous studies show OCT2 expression in several populations of cholinergic and monoaminergic neurons, the regional distribution of OCT2 in the brain remains largely unknown. Here we performed immunohistochemical analyses to reveal the distribution of OCT2 throughout the mouse forebrain...
October 28, 2016: Neuroscience Letters
Eoin Sherwin, Valentina Gigliucci, Andrew Harkin
OBJECTIVE: The regional specific modulation of neuronal activation following drug administration is of interest to determine brain areas involved in the behavioural effects of experimental test compounds. In the current investigation the effects of the L-arginine related NOS inhibitor N(ω)-l-nitroarginine (L-NA) and the structurally unrelated selective neuronal NOS inhibitor 1-(2-Trifluoro-methyl-phenyl) imidazole (TRIM) were assessed in the rat for changes in regional c-FOS immunoreactivity, a marker of neuronal activation, upon exposure to the forced swimming test (FST)...
January 1, 2017: Behavioural Brain Research
Ruiyong Wu, Jun Gao, Shinnyi Chou, Collin Davis, Ming Li
As a highly motivated social behavior, maternal behavior in rats has been routinely used to study psychoactive drugs for clinical, neuroscience and pharmacological purposes. Recent evidence indicates that acute activation of serotonin 2C (5-HT2C) receptors causes a disruption of rat maternal behavior. The present study was designed to elucidate the behavioral, pharmacological mechanisms and neuroanatomical basis of this 5-HT2C effect. First, we replicated the finding that acute MK212 injection (2.0mg/kg, a highly selective 5-HT2C agonist) disrupts maternal behavior, especially on pup retrieval...
November 2016: Psychoneuroendocrinology
Rajeshwari R Solanki, Jamie L Scholl, Michael J Watt, Kenneth J Renner, Gina L Forster
Amphetamine withdrawal increases anxiety and stress sensitivity related to blunted ventral hippocampus (vHipp) and enhances the central nucleus of the amygdala (CeA) serotonin responses. Extracellular serotonin levels are regulated by the serotonin transporter (SERT) and organic cation transporter 3 (OCT3), and vHipp OCT3 expression is enhanced during 24 hours of amphetamine withdrawal, while SERT expression is unaltered. Here, we tested whether OCT3 and SERT expression in the CeA is also affected during acute withdrawal to explain opposing regional alterations in limbic serotonergic neurotransmission and if respective changes continued with two weeks of withdrawal...
2016: Journal of Experimental Neuroscience
Fumiaki Ihara, Maki Nishimura, Yoshikage Muroi, Motamed Elsayed Mahmoud, Naoaki Yokoyama, Kisaburo Nagamune, Yoshifumi Nishikawa
Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory...
October 2016: Infection and Immunity
William Blessing, Robin McAllen, Michael McKinley
The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery...
2016: Comprehensive Physiology
Viktória Kormos, László Gáspár, László Á Kovács, József Farkas, Tamás Gaszner, Valér Csernus, András Balogh, Hitoshi Hashimoto, Dóra Reglődi, Zsuzsanna Helyes, Balázs Gaszner
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in stress adaptation with potential relevance in mood disorder management. PACAP deficient (KO) mice on CD1 background were shown to have depression-like phenotype. Here we aimed at investigating effects of chronic variable mild stress (CVMS) in non-injected, vehicle and imipramine-treated KO mice vs. wildtype (WT) counterparts. We hypothesized reduced FosB neuronal activity in stress-related centers, altered activity and peptide/neurotransmitter content of corticotropin-releasing factor (CRF) cells of the oval (ovBST) bed nucleus of stria terminalis (BST), urocortin 1 (Ucn1) neurons of centrally projecting Edinger-Westphal nucleus (cpEW) and serotonin (5HT) cells of dorsal raphe (DR) in PACAP deficiency...
August 25, 2016: Neuroscience
Stephanie B Linley, Francisco Olucha-Bordonau, Robert P Vertes
As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al...
January 1, 2017: Journal of Comparative Neurology
Muhammad Zahid Khan
Zinc the essential trace element, plays a significant role in the brain development and in the proper brain functions at every stage of life. Misbalance of zinc (Zn(2+)) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as Alzheimer's disease, Depression, and Epilepsy. In brain, Zn(2+) has been identified as a ligand, capable of activating and inhibiting the receptors including the NMDA-type glutamate receptors (NMDARs), GABAA receptors, nicotinic acetylcholine receptors (nAChRs), glycine receptors (glyR) and serotonin receptors (5-HT3)...
April 2016: Biomedicine & Pharmacotherapy, Biomédecine & Pharmacothérapie
Miku Aoki, Yoshihisa Watanabe, Kanji Yoshimoto, Atsushi Tsujimura, Toshiro Yamamoto, Narisato Kanamura, Masaki Tanaka
Serotonin 2C receptors (5-HT2 C Rs) are widely expressed in the central nervous system, and are associated with various neurological disorders. 5-HT2 C R mRNA undergoes adenosine-to-inosine RNA editing at five sites within its coding sequence, resulting in expression of 24 different isoforms. Several edited isoforms show reduced activity, suggesting that RNA editing modulates serotonergic systems in the brain with causative relevance to neuropsychiatric disorders. Transgenic mice solely expressing the non-edited 5-HT2 C R INI-isoform (INI) or the fully edited VGV-isoform exhibit various phenotypes including metabolic abnormalities, aggressive behaviour, anxiety-like behaviour, and depression-like behaviour...
May 2016: European Journal of Neuroscience
Jan Vevera, Karel Valeš, Zdeněk Fišar, Jana Hroudová, Namrata Singh, Aleš Stuchlík, Petr Kačer, Tereza Nekovářová
Simvastatin and other statins (HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors) are extensively used in clinical practices and are very effective in decreasing serum low-density lipoprotein cholesterol. However, their effect on cholesterol synthesis in central nervous system and its behavioral consequences have not been fully understood yet. We have studied selected biologic traits potentially affected by statin treatment - serotonin (5-HT) uptake in platelets, membrane microviscosity in erythrocytes, cholesterol level in the brain (amygdala; hippocampus and prefrontal cortex), as well as behavioral changes in an elevated plus maze and open field test in male Long-Evans rats, which were treated by simvastatin (30mg/kg per day) for 2 or 4weeks...
May 1, 2016: Physiology & Behavior
Emily A Karanges, Linnet Ramos, Bruno Dampney, Anastasia S Suraev, Kong M Li, Iain S McGregor, Glenn E Hunt
Adolescents and adults may respond differently to antidepressants, with poorer efficacy and greater probability of adverse effects in adolescents. The mechanisms underlying this differential response are largely unknown, but likely relate to an interaction between the neural effects of antidepressants and brain development. We used Fos immunohistochemistry to examine regional differences in adolescent (postnatal day (PND) 28) and young adult (PND 56) male, Wistar rats given a single injection of the selective serotonin reuptake inhibitor paroxetine (10mg/kg)...
March 2016: Brain Research Bulletin
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"