keyword
MENU ▼
Read by QxMD icon Read
search

Proteostasis

keyword
https://www.readbyqxmd.com/read/28651008/production-and-purification-of-human-hsp90%C3%AE-in-escherichia-coli
#1
Martina Radli, Dmitry B Veprintsev, Stefan G D Rüdiger
The molecular chaperone Hsp90 is an essential member of the cellular proteostasis system. It plays an important role in the stabilisation and activation of a large number of client proteins and is involved in fatal disease processes, e.g. Alzheimer disease, cancer and cystic fibrosis. This makes Hsp90 a crucial protein to study. Mechanistic studies require large amounts of protein but the production and purification of recombinant human Hsp90 in Escherichia coli is challenging and laborious. Here we identified conditions that influence Hsp90 production, and optimised a fast and efficient purification protocol...
2017: PloS One
https://www.readbyqxmd.com/read/28648146/emerging-roles-of-protein-disulfide-isomerase-in-cancer
#2
Eunyoug Lee, Do Hee Lee
Protein disulfide isomerase (PDI) family is a group of multifunctional endoplasmic reticulum (ER) enzymes mediating the formation of disulfide bonds, catalyzing the cysteine-based redox reactions and assisting the quality control of the client proteins. Recent structural and functional studies have demonstrated that PDI members not only play an essential role in the proteostasis in the ER but also exert diverse effects in numerous human diseases including cancer and neurodegenerative diseases. Increasing evidence suggests that PDI is actively involved in the proliferation, survival, and metastasis of several types of cancer cells...
June 26, 2017: BMB Reports
https://www.readbyqxmd.com/read/28647092/regulating-secretory-proteostasis-through-the-unfolded-protein-response-from-function-to-therapy
#3
REVIEW
Lars Plate, R Luke Wiseman
Imbalances in secretory proteostasis induced by genetic, environmental, or aging-related insults are pathologically associated with etiologically diverse protein misfolding diseases. To protect the secretory proteome from these insults, organisms evolved stress-responsive signaling pathways that regulate the composition and activity of biologic pathways involved in secretory proteostasis maintenance. The most prominent of these is the endoplasmic reticulum (ER) unfolded protein response (UPR), which functions to regulate ER proteostasis in response to ER stress...
June 21, 2017: Trends in Cell Biology
https://www.readbyqxmd.com/read/28646136/recurrent-background-mutations-in-whi2-impair-proteostasis-and-degradation-of-misfolded-cytosolic-proteins-in-saccharomyces-cerevisiae
#4
Sophie A Comyn, Stéphane Flibotte, Thibault Mayor
Proteostasis promotes viability at both the cellular and organism levels by maintaining a functional proteome. This requires an intricate protein quality control (PQC) network that mediates protein folding by molecular chaperones and removes terminally misfolded proteins via the ubiquitin proteasome system and autophagy. How changes within the PQC network can perturb proteostasis and shift the balance between protein folding and proteolysis remain poorly understood. However, given that proteostasis is altered in a number of conditions such as cancer and ageing, it is critical that we identify the factors that mediate PQC and understand the interplay between members of the proteostatic network...
June 23, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28645931/a-potential-role-of-the-unfolded-protein-response-in-post-transplant-cancer
#5
REVIEW
Sandra Bodeau, Chloé Sauzay, Olivier Pluquet, Gabriel Choukroun, Antoine Galmiche
Cancer is one of the major causes of mortality in organ transplant patients receiving immunosuppressive regimen based on Cyclosporin A (CsA). Organ transplantation and chronic immunosuppression are typically associated with skin cancers (both squamous cell carcinoma and melanoma) and renal cell carcinoma (RCC). Recent studies have shown that in addition to its immunosuppressive effects, accounted for by the inhibition of calcineurin and the modulation of the transcriptional programme of lymphocytes, CsA also directly stimulates the growth and aggressive behaviour of various cancer cells...
July 1, 2017: Clinical Science (1979-)
https://www.readbyqxmd.com/read/28643372/fine-tuning-perk-signaling-for-neuroprotection
#6
REVIEW
Mark Halliday, Daniel Hughes, Giovanna Mallucci
Protein translation and folding are tightly controlled processes in all cells, by proteostasis, an important component of which is the unfolded protein response (UPR). During periods of endoplasmic reticulum stress due to protein misfolding, the UPR activates a coordinated response in which the PERK branch activation restricts translation, while a variety of genes involved with protein folding, degradation, chaperone expression and stress responses are induced through signaling of the other branches. Chronic overactivation of the UPR, particularly the PERK branch is observed in the brains of patients in a number of protein misfolding neurodegenerative diseases, including Alzheimer's, and Parkinson's diseases and the taopathies...
June 23, 2017: Journal of Neurochemistry
https://www.readbyqxmd.com/read/28631426/hsp90%C3%AE-regulates-atm-and-nbn-functions-in-sensing-and-repair-of-dna-double-strand-breaks
#7
Rosa Pennisi, Antonio Antoccia, Stefano Leone, Paolo Ascenzi, Alessandra di Masi
The molecular chaperone heat shock protein 90 (Hsp90α) regulates cells proteostasis and mitigates the harmful effects of endogenous and exogenous stressors on the proteome. Indeed, the inhibition of Hsp90α ATPase activity affects the cellular response to ionizing radiation (IR). Although the interplay between Hsp90α and several DNA damage response (DDR) proteins has been reported, its role in the DDR is still unclear. Here, we show that ATM and NBN, but not 53BP1, RAD50, and MRE11, are Hsp90α clients as the Hsp90α inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) induces ATM and NBN polyubiquitination and proteosomal degradation in normal fibroblasts and lymphoblastoid cells lines...
June 20, 2017: FEBS Journal
https://www.readbyqxmd.com/read/28622521/the-upr-er-sensor-and-coordinator-of-organismal-homeostasis
#8
REVIEW
Ashley E Frakes, Andrew Dillin
Life is stressful. Organisms are repeatedly exposed to stressors that disrupt protein homeostasis (proteostasis), resulting in protein misfolding and aggregation. To sense and respond to proteotoxic perturbations, cells have evolved compartment-specific stress responses, such as the unfolded protein response of the endoplasmic reticulum (UPR(ER)). However, UPR(ER) function is impaired with age, which, we propose, creates a permissive environment for protein aggregation, unresolved ER stress, and chronic inflammation...
June 15, 2017: Molecular Cell
https://www.readbyqxmd.com/read/28619716/ratchet-like-polypeptide-translocation-mechanism-of-the-aaa-disaggregase-hsp104
#9
Stephanie N Gates, Adam L Yokom, JiaBei Lin, Meredith E Jackrel, Alexandrea N Rizo, Nathan M Kendsersky, Courtney E Buell, Elizabeth A Sweeny, Korrie L Mack, Edward Chuang, Mariana P Torrente, Min Su, James Shorter, Daniel R Southworth
Hsp100 polypeptide translocases are conserved AAA+ machines that maintain proteostasis by unfolding aberrant and toxic proteins for refolding or proteolytic degradation. The Hsp104 disaggregase from S. cerevisiae solubilizes stress-induced amorphous aggregates and amyloid. The structural basis for substrate recognition and translocation is unknown. Using a model substrate (casein), we report cryo-EM structures at near-atomic resolution of Hsp104 in different translocation states. Substrate interactions are mediated by conserved, pore-loop tyrosines that contact an 80 Å-long unfolded polypeptide along the axial channel...
June 15, 2017: Science
https://www.readbyqxmd.com/read/28613983/azithromycin-attenuates-myofibroblast-differentiation-and-lung-fibrosis-development-through-proteasomal-degradation-of-nox4
#10
Kazuya Tsubouchi, Jun Araya, Shunsuke Minagawa, Hiromichi Hara, Akihiro Ichikawa, Nayuta Saito, Tsukasa Kadota, Nahoko Sato, Masahiro Yoshida, Yusuke Kurita, Kenji Kobayashi, Saburo Ito, Yu Fujita, Hirofumi Utsumi, Haruhiko Yanagisawa, Mitsuo Hashimoto, Hiroshi Wakui, Yutaka Yoshii, Takeo Ishikawa, Takanori Numata, Yumi Kaneko, Hisatoshi Asano, Makoto Yamashita, Makoto Odaka, Toshiaki Morikawa, Katsutoshi Nakayama, Yoichi Nakanishi, Kazuyoshi Kuwano
Accumulation of profibrotic myofibroblasts is involved in the process of fibrosis development during idiopathic pulmonary fibrosis (IPF) pathogenesis. TGFB (transforming growth factor beta) is one of the major profibrotic cytokines for myofibroblast differentiation and NOX4 (NADPH oxidase 4) has an essential role in TGFB-mediated cell signaling. Azithromycin (AZM), a second-generation antibacterial macrolide, has a pleiotropic effect on cellular processes including proteostasis. Hence, we hypothesized that AZM may regulate NOX4 levels by modulating proteostasis machineries, resulting in inhibition of TGFB-associated lung fibrosis development...
June 14, 2017: Autophagy
https://www.readbyqxmd.com/read/28613034/torc1-mediated-sensing-of-chaperone-activity-alters-glucose-metabolism-and-extends-lifespan
#11
Matea Perić, Anita Lovrić, Ana Šarić, Marina Musa, Peter Bou Dib, Marina Rudan, Andrea Nikolić, Sandra Sobočanec, Ana-Matea Mikecin, Sven Dennerlein, Ira Milošević, Kristian Vlahoviček, Nuno Raimundo, Anita Kriško
Protein quality control mechanisms, required for normal cellular functioning, encompass multiple functions related to protein production and maintenance. However, the existence of communication between proteostasis and metabolic networks and its underlying mechanisms remain elusive. Here, we report that enhanced chaperone activity and consequent improved proteostasis are sensed by TORC1 via the activity of Hsp82. Chaperone enrichment decreases the level of Hsp82, which deactivates TORC1 and leads to activation of Snf1/AMPK, regardless of glucose availability...
June 14, 2017: Aging Cell
https://www.readbyqxmd.com/read/28610619/amyotrophic-lateral-sclerosis-patient-ipsc-derived-astrocytes-impair-autophagy-via-non-cell-autonomous-mechanisms
#12
Martin Madill, Katya McDonagh, Jun Ma, Alice Vajda, Paul McLoughlin, Timothy O'Brien, Orla Hardiman, Sanbing Shen
Amyotrophic lateral sclerosis, a devastating neurodegenerative disease, is characterized by the progressive loss of motor neurons and the accumulation of misfolded protein aggregates. The latter suggests impaired proteostasis may be a key factor in disease pathogenesis, though the underlying mechanisms leading to the accumulation of aggregates is unclear. Further, recent studies have indicated that motor neuron cell death may be mediated by astrocytes. Herein we demonstrate that ALS patient iPSC-derived astrocytes modulate the autophagy pathway in a non-cell autonomous manner...
June 13, 2017: Molecular Brain
https://www.readbyqxmd.com/read/28607377/amyloid-%C3%AE-peptides-overexpression-in-retinal-pigment-epithelial-cells-via-aav-mediated-gene-transfer-mimics-amd-like-pathology-in-mice
#13
Tuhina Prasad, Ping Zhu, Amrisha Verma, Paramita Chakrabarty, Awilda M Rosario, Todd E Golde, Qiuhong Li
Age-related macular degeneration (AMD) is a progressive retinal neurodegenerative disorder characterized by extracellular deposits known as drusen. A major constituent of drusen deposits are Alzheimer disease-associated amyloid β (Aβ) peptides. To understand the etiology of Aβ proteostasis in AMD, we delivered recombinant adeno-associated virus (AAV) encoding Aβ42 and Aβ40 peptides fused to BRI2 protein by intraocular injection in C57BL/6J mice. Endogenous protease cleavage of such constructs leads to production of secreted Aβ42 and Aβ40 respectively...
June 12, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28605671/targeted-protein-knockdown-using-small-molecule-degraders
#14
REVIEW
Kanak Raina, Craig M Crews
Small molecule probes of biological systems have traditionally been designed to bind to and inhibit the active sites of their protein targets. While this class of pharmacological agents has been broadened by the development of a small number of allosteric and protein-protein interaction (PPI) inhibitors, conventional drug design still excludes 'undruggable' proteins that are neither enzymes nor receptors. Recent years have seen the emergence of new classes of small molecules that can target hitherto undruggable proteins by recruiting the cellular proteostasis machinery to selectively tag them for degradation...
June 9, 2017: Current Opinion in Chemical Biology
https://www.readbyqxmd.com/read/28600786/mitotic-dysfunction-associated-with-aging-hallmarks
#15
Joana Catarina Macedo, Sara Vaz, Elsa Logarinho
Aging is a biological process characterized by the progressive deterioration of physiological functions known to be the main risk factor for chronic diseases and declining health. There has been an emerging connection between aging and aneuploidy, an aberrant number of chromosomes, even though the molecular mechanisms behind age-associated aneuploidy remain largely unknown. In recent years, several genetic pathways and biochemical processes controlling the rate of aging have been identified and proposed as aging hallmarks...
2017: Advances in Experimental Medicine and Biology
https://www.readbyqxmd.com/read/28594326/er-retention-is-imposed-by-copii-protein-sorting-and-attenuated-by-4-phenylbutyrate
#16
Wenfu Ma, Elena Goldberg, Jonathan Goldberg
Native cargo proteins exit the endoplasmic reticulum (ER) in COPII-coated vesicles, whereas resident and misfolded proteins are substantially excluded from vesicles by a retention mechanism that remains unresolved. We probed the ER retention process using the proteostasis regulator 4-phenylbutyrate (4-PBA), which we show targets COPII protein to reduce the stringency of retention. 4-PBA competes with p24 proteins to bind COPII. When p24 protein uptake is blocked, COPII vesicles package resident proteins and an ER-trapped mutant LDL receptor...
June 8, 2017: ELife
https://www.readbyqxmd.com/read/28593023/mechanisms-underlying-the-essential-role-of-mitochondrial-membrane-lipids-in-yeast-chronological-aging
#17
REVIEW
Younes Medkour, Paméla Dakik, Mélissa McAuley, Karamat Mohammad, Darya Mitrofanova, Vladimir I Titorenko
The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging...
2017: Oxidative Medicine and Cellular Longevity
https://www.readbyqxmd.com/read/28589125/multifunctional-mitochondrial-aaa-proteases
#18
REVIEW
Steven E Glynn
Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell...
2017: Frontiers in Molecular Biosciences
https://www.readbyqxmd.com/read/28580188/on-the-relationship-between-energy-metabolism-proteostasis-aging-and-parkinson-s-disease-possible-causative-role-of-methylglyoxal-and-alleviative-potential-of-carnosine
#19
REVIEW
Alan R Hipkiss
Recent research shows that energy metabolism can strongly influence proteostasis and thereby affect onset of aging and related disease such as Parkinson's disease (PD). Changes in glycolytic and proteolytic activities (influenced by diet and development) are suggested to synergistically create a self-reinforcing deleterious cycle via enhanced formation of triose phosphates (dihydroxyacetone-phosphate and glyceraldehyde-3-phosphate) and their decomposition product methylglyoxal (MG). It is proposed that triose phosphates and/or MG contribute to the development of PD and its attendant pathophysiological symptoms...
May 2017: Aging and Disease
https://www.readbyqxmd.com/read/28579939/the-role-of-co-chaperones-in-synaptic-proteostasis-and-neurodegenerative-disease
#20
REVIEW
Erica L Gorenberg, Sreeganga S Chandra
Synapses must be preserved throughout an organism's lifespan to allow for normal brain function and behavior. Synapse maintenance is challenging given the long distances between the termini and the cell body, reliance on axonal transport for delivery of newly synthesized presynaptic proteins, and high rates of synaptic vesicle exo- and endocytosis. Hence, synapses rely on efficient proteostasis mechanisms to preserve their structure and function. To this end, the synaptic compartment has specific chaperones to support its functions...
2017: Frontiers in Neuroscience
keyword
keyword
83922
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"