Read by QxMD icon Read

HDAC obesity

Sorabh Sharma, Rajeev Taliyan
Insulin resistance is a common feature of obesity and predisposes the affected individuals to a variety of pathologies, including type 2 diabetes mellitus (T2DM), dyslipidemias, hypertension, cardiovascular disease etc. Insulin resistance is the primary cause of T2DM and it occurs many years before the disease onset. Although Thiazolidinediones (TZDs) such as rosiglitazone and pioglitazone are outstanding insulin sensitizers and are in clinical use since 1990s, however, their serious side effects such as heart attack and bladder cancer have limited their utilization...
September 9, 2016: Pharmacological Research: the Official Journal of the Italian Pharmacological Society
Hai-Yan Jia, Quan-Zhong Li, Li-Fang Lv
BACKGROUND/AIMS: Liver X receptor (LXR), a member of the nuclear receptor superfamily, is known to induce the expression of SREBP-1c and ChREBP, two master regulators of hepatic lipogenesis. Histone deacyetylases (HDACs) have been shown to play critical roles in glucose and lipids metabolism. However, the exact role of HDAC5 in lipogenesis remains elusive. METHODS: mRNA and protein levels of HDAC5 were analyzed by quantitative real-time PCR and Western blots in high-fat-diet-induced and leptin receptor deficiency-induced obese mice...
2016: Cellular Physiology and Biochemistry
Roman M Stilling, Marcel van de Wouw, Gerard Clarke, Catherine Stanton, Timothy G Dinan, John F Cryan
Several lines of evidence suggest that brain function and behaviour are influenced by microbial metabolites. Key products of the microbiota are short-chain fatty acids (SCFAs), including butyric acid. Butyrate is a functionally versatile molecule that is produced in the mammalian gut by fermentation of dietary fibre and is enriched in butter and other dairy products. Butyrate along with other fermentation-derived SCFAs (e.g. acetate, propionate) and the structurally related ketone bodies (e.g. acetoacetate and d-β-hydroxybutyrate) show promising effects in various diseases including obesity, diabetes, inflammatory (bowel) diseases, and colorectal cancer as well as neurological disorders...
October 2016: Neurochemistry International
Ravi Sonkar, Catherine A Powell, Mahua Choudhury
Endocrine disruptors, phthalates, may have contributed to recent global obesity health crisis. Our study investigated the potential of benzyl butyl phthalate (BBP) to regulate the mesenchymal stem cell epigenome to drive adipogenesis. BBP exposure enhanced lipid accumulation and adipogenesis in a dose-dependent manner compared to control (P < 0.001). Adipogenesis markers, PPARγ (P < 0.001), C/EBPα (P < 0.01), and aP2 (P < 0.001) were significantly upregulated by increasing concentrations of BBP when compared to DMSO...
May 6, 2016: Molecular and Cellular Endocrinology
Ekta Lachmandas, Corina N A M van den Heuvel, Michelle S M A Damen, Maartje C P Cleophas, Mihai G Netea, Reinout van Crevel
Type 2 diabetes mellitus confers a threefold increased risk for tuberculosis, but the underlying immunological mechanisms are still largely unknown. Possible mediators of this increased susceptibility are short-chain fatty acids, levels of which have been shown to be altered in individuals with diabetes. We examined the influence of physiological concentrations of butyrate on cytokine responses to Mycobacterium tuberculosis (Mtb) in human peripheral blood mononuclear cells (PBMCs). Butyrate decreased Mtb-induced proinflammatory cytokine responses, while it increased production of IL-10...
2016: Journal of Diabetes Research
Maitea Guridi, Barbara Kupr, Klaas Romanino, Shuo Lin, Denis Falcetta, Lionel Tintignac, Markus A Rüegg
BACKGROUND: The mammalian target of rapamycin complex 1 (mTORC1) is a central node in a network of signaling pathways controlling cell growth and survival. This multiprotein complex integrates external signals and affects different nutrient pathways in various organs. However, it is not clear how alterations of mTORC1 signaling in skeletal muscle affect whole-body metabolism. RESULTS: We characterized the metabolic phenotype of young and old raptor muscle knock-out (RAmKO) and TSC1 muscle knock-out (TSCmKO) mice, where mTORC1 activity in skeletal muscle is inhibited or constitutively activated, respectively...
2016: Skeletal Muscle
Wei Wei, Wei Sun, Shanshan Yu, Yu Yang, Limei Ai
Gut microbiota and dietary fiber are critical for protecting body from obesity, diabetes and cancer. Butyrate, produced in the gut by bacterial fermentation of dietary fibers, is demonstrated to be protective against the development of colorectal cancer as a histone deacetylase (HDAC) inhibitor. We report that high-fiber diet and butyrate significantly inhibited the growth lymphoma tumors. Butyrate induced apoptosis of lymphoma tumor cells and significantly up-regulated histone 3 acetylation (H3ac) level and target genes such as Fas, P21, P27...
October 2016: Leukemia & Lymphoma
Fenfen Li, Rui Wu, Xin Cui, Lin Zha, Liqing Yu, Hang Shi, Bingzhong Xue
Inhibiting class I histone deacetylases (HDACs) increases energy expenditure, reduces adiposity, and improves insulin sensitivity in obese mice. However, the precise mechanism is poorly understood. Here, we demonstrate that HDAC1 is a negative regulator of the brown adipocyte thermogenic program. The Hdac1 level is lower in mouse brown fat (BAT) than white fat, is suppressed in mouse BAT during cold exposure or β3-adrenergic stimulation, and is down-regulated during brown adipocyte differentiation. Remarkably, overexpressing Hdac1 profoundly blocks, whereas deleting Hdac1 significantly enhances, β-adrenergic activation-induced BAT-specific gene expression in brown adipocytes...
February 26, 2016: Journal of Biological Chemistry
Shun-Fu Chang, Rong-Ze Hsieh, Kuo-Chin Huang, Cheng Allen Chang, Fang-Yao Chiu, Hsing-Chun Kuo, Cheng-Nan Chen, Yu-Ping Su
Bone morphogenetic proteins (BMPs) play positive roles in cartilage development, but they can barely be detected in healthy articular cartilage. However, recent evidence has indicated that BMPs could be detected in osteoarthritic and damaged cartilage and their precise roles have not been well defined. Extremely high amounts of leptin have been reported in obese individuals, which can be associated with osteoarthritis (OA) development. The aim of this study was to investigate whether BMPs could be induced in human primary chondrocytes during leptin-stimulated OA development and the underlying mechanism...
2015: PloS One
Kosaku Shinoda, Kana Ohyama, Yutaka Hasegawa, Hsin-Yi Chang, Mayu Ogura, Ayaka Sato, Haemin Hong, Takashi Hosono, Louis Z Sharp, David W Scheel, Mark Graham, Yasushi Ishihama, Shingo Kajimura
Catecholamines promote lipolysis both in brown and white adipocytes, whereas the same stimuli preferentially activate thermogenesis in brown adipocytes. Molecular mechanisms for the adipose-selective activation of thermogenesis remain poorly understood. Here, we employed quantitative phosphoproteomics to map global and temporal phosphorylation profiles in brown, beige, and white adipocytes under β3-adrenenoceptor activation and identified kinases responsible for the adipose-selective phosphorylation profiles...
December 1, 2015: Cell Metabolism
Sarandeep S S Boyanapalli, Ah-Ng Tony Kong
Curcumin (diferuloylmethane), a polyphenolic compound, is a component of Curcuma longa, commonly known as turmeric. It is a well-known anti-inflammatory, anti-oxidative, and anti-lipidemic agent and has recently been shown to modulate several diseases via epigenetic regulation. Many recent studies have demonstrated the role of epigenetic inactivation of pivotal genes that regulate human pathologies, such as neurocognitive disorders, inflammation, obesity, and cancers. Epigenetic changes involve changes in DNA methylation, histone modifications, or altered microRNA expression patterns which are known to be interconnected and play a key role in tumor progression and failure of conventional chemotherapy...
April 2015: Current Pharmacology Reports
Tapan K Chatterjee, Joshua E Basford, Kan Hui Yiew, David W Stepp, David Y Hui, Neal L Weintraub
Adipose tissue serves as both a storage site for excess calories and as an endocrine organ, secreting hormones such as adiponectin that promote metabolic homeostasis. In obesity, adipose tissue expands primarily by hypertrophy (enlargement of existing adipocytes) rather than hyperplasia (generation of new adipocytes via adipogenic differentiation of preadipocytes). Progressive adipocyte hypertrophy leads to inflammation, insulin resistance, dyslipidemia, and ectopic lipid deposition, the hallmark characteristics of metabolic disease...
October 2014: Adipocyte
Lucía Barbier-Torres, Naiara Beraza, Pablo Fernández-Tussy, Fernando Lopitz-Otsoa, David Fernández-Ramos, Imanol Zubiete-Franco, Marta Varela-Rey, Teresa C Delgado, Virginia Gutiérrez, Juan Anguita, Albert Pares, Jesús M Banales, Erica Villa, Juan Caballería, Luis Alvarez, Shelly C Lu, Jose M Mato, María Luz Martínez-Chantar
UNLABELLED: Prohibitin-1 (PHB1) is an evolutionarily conserved pleiotropic protein that participates in diverse processes depending on its subcellular localization and interactome. Recent data have indicated a diverse role for PHB1 in the pathogenesis of obesity, cancer, and inflammatory bowel disease, among others. Data presented here suggest that PHB1 is also linked to cholestatic liver disease. Expression of PHB1 is markedly reduced in patients with primary biliary cirrhosis and biliary atresia or with Alagille syndrome, two major pediatric cholestatic conditions...
October 2015: Hepatology: Official Journal of the American Association for the Study of Liver Diseases
N C Hait, D Avni, A Yamada, M Nagahashi, T Aoyagi, H Aoki, C I Dumur, Z Zelenko, E J Gallagher, D Leroith, S Milstien, K Takabe, S Spiegel
Estrogen receptor-α (ERα)-negative breast cancer is clinically aggressive and does not respond to conventional hormonal therapies. Strategies that lead to re-expression of ERα could sensitize ERα-negative breast cancers to selective ER modulators. FTY720 (fingolimod, Gilenya), a sphingosine analog, is the Food and Drug Administration (FDA)-approved prodrug for treatment of multiple sclerosis that also has anticancer actions that are not yet well understood. We found that FTY720 is phosphorylated in breast cancer cells by nuclear sphingosine kinase 2 and accumulates there...
2015: Oncogenesis
Mayu Kasubuchi, Sae Hasegawa, Takero Hiramatsu, Atsuhiko Ichimura, Ikuo Kimura
During feeding, the gut microbiota contributes to the host energy acquisition and metabolic regulation thereby influencing the development of metabolic disorders such as obesity and diabetes. Short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, which are produced by gut microbial fermentation of dietary fiber, are recognized as essential host energy sources and act as signal transduction molecules via G-protein coupled receptors (FFAR2, FFAR3, OLFR78, GPR109A) and as epigenetic regulators of gene expression by the inhibition of histone deacetylase (HDAC)...
April 2015: Nutrients
Genlai Li, Wen Yao, Honglin Jiang
BACKGROUND: Short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are the main products of microbial fermentation in the gut and might mediate some of the effects of gut microbiota and nutrition on development, metabolism, and pathogenesis of obesity and other diseases. OBJECTIVE: The objective of this study was to determine the effects of SCFAs on adipocyte differentiation and the underlying mechanism. METHODS: The stromal vascular fraction (SVF) of the porcine subcutaneous fat was used as the preadipocyte model...
December 2014: Journal of Nutrition
Claire Kuzmochka, Houssein-Salem Abdou, Robert J G Haché, Ella Atlas
Several drugs currently used in the management of mood disorders, epilepsy (ie, valproic acid), or the control of inflammation (ie, corticosteroids) have been shown to promote visceral obesity in humans by increasing the number of newly formed adipocytes. Valproic acid is classified as a nonspecific histone deacetylase (HDAC) inhibitor, along with trichostatin A and butyric acid. In vitro experiments have demonstrated that such molecules greatly enhance the rate of preadipocyte differentiation, similarly to the effect of corticosteroids...
December 2014: Endocrinology
Sabina Lukovac, Clara Belzer, Linette Pellis, Bart J Keijser, Willem M de Vos, Roy C Montijn, Guus Roeselers
UNLABELLED: The gut microbiota is essential for numerous aspects of human health. However, the underlying mechanisms of many host-microbiota interactions remain unclear. The aim of this study was to characterize effects of the microbiota on host epithelium using a novel ex vivo model based on mouse ileal organoids. We have explored the transcriptional response of organoids upon exposure to short-chain fatty acids (SCFAs) and products generated by two abundant microbiota constituents, Akkermansia muciniphila and Faecalibacterium prausnitzii...
2014: MBio
Wenwen Shen, Cui Wang, Lulu Xia, Chaonan Fan, Hua Dong, Richard J Deckelbaum, Kemin Qi
We report evidence of a detailed epigenetic modification of the leptin promoter and the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs), which is closely associated with the leptin gene transcription in obesity. In the adipose tissue of diet induced obese (DIO) mice, methylation of the CpG island and the binding of methyl-CpG-binding domain protein 2 (MBD2) and DNA methyltransferases (DNMTs) at the leptin promoter are increased and RNA Pol II is decreased. Additionally, histones H3 and H4 are hypoacetylated, lysine 4 of histone H3 (H3K4) is hypomethylated and the binding of histone deacetylases (HDACs) 1, 2 and 6 is increased at the leptin promoter in the DIO mice...
2014: Scientific Reports
Heidi M Medford, Emily J Cox, Lindsey E Miller, Susan A Marsh
Diets high in sugar and saturated fat (Western diet) contribute to obesity and pathophysiology of metabolic syndrome. A common physiological response to obesity is hypertension, which induces cardiac remodeling and hypertrophy. Hypertrophy is regulated at the level of chromatin by repressor element 1-silencing transcription factor (REST), and pathological hypertrophy is associated with reexpression of a fetal cardiac gene program. Reactivation of fetal genes is commonly observed in hypertension-induced hypertrophy; however, this response is blunted in diabetic hearts, partially due to upregulation of the posttranslational modification O-linked-β-N-acetylglucosamine (O-GlcNAc) to proteins by O-GlcNAc transferase (OGT)...
April 15, 2014: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"