Read by QxMD icon Read

sugar transporter

David W Templeton, Justin B Sluiter, Amie Sluiter, Courtney Payne, David P Crocker, Ling Tao, Ed Wolfrum
BACKGROUND: In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years...
2016: Biotechnology for Biofuels
E Saplaoura, F Kragler
Phloem serves as a highway for mobile signals in plants. Apart from sugars and hormones, proteins and RNAs are transported via the phloem and contribute to the intercellular communication coordinating growth and development. Different classes of RNAs have been found mobile and in the phloem exudate such as viral RNAs, small interfering RNAs (siRNAs), microRNAs, transfer RNAs, and messenger RNAs (mRNAs). Their transport is considered to be mediated via ribonucleoprotein complexes formed between phloem RNA-binding proteins and mobile RNA molecules...
2016: Enzymes
Lana Shabala, Jingyi Zhang, Igor I Pottosin, Jayakumar Bose, Min Zhu, Anja Thoe Fuglsang, Ana Velarde-Buendia, Amandine Massart, Camilla B Hill, Ute Roessner, Antony Bacic, Honghong Wu, Elisa Azzarello, Camilla Pandolfi, Meixue Zhou, Charlotte Poschenrieder, Stefano Mancuso, Sergey Shabala
While the importance of cell-type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley. We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na+ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na+ suggesting that higher sensitivity of apical cells to salt is not related to either enhanced Na+ exclusion or sequestration inside the root...
October 21, 2016: Plant Physiology
Sha Xu, Ge-Yuan Zhang, Huijie Zhang, Toshihiko Kitajima, Hideki Nakanishi, Xiao-Dong Gao
BACKGROUND: To humanize yeast N-glycosylation pathways, genes involved in yeast specific hyper-mannosylation must be disrupted followed by the introduction of genes catalyzing the synthesis, transport, and addition of human sugars. However, deletion of these genes, for instance, OCH1, which initiates hyper-mannosylation, could cause severe defects in cell growth, morphogenesis and response to environmental challenges. RESULTS: In this study, overexpression of RHO1, which encodes the Rho1p small GTPase, is confirmed to partially recover the growth defect of Saccharomyces cerevisiae Δalg3Δoch1 double mutant strain...
October 21, 2016: Microbial Cell Factories
Mahmoud Masoud, Erhan Kozan, Geoff Kent, Shi Qiang Liu
The freight rail systems have an essential role to play in transporting the commodities between the delivery and collection points at different locations such as farms, factories and mills. The fright transport system uses a daily schedule of train runs to meet the needs of both the harvesters and the mills (An Integrated Approach to Optimise Cane Rail Operations (M. Masoud, E. Kozan, G. Kent, Liu, Shi Qiang, 2016b) [1]). Producing an efficient daily schedule to optimise the rail operations requires integration of the main elements of harvesting, transporting and milling in the value chain of the Australian agriculture industry...
December 2016: Data in Brief
Mar Margalef-Català, Isabel Araque, Albert Bordons, Cristina Reguant, Joaquín Bautista-Gallego
Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response. One of the most influenced functions in PSU-1 due to inoculation into wine-like medium (WLM) was translation, showing the over-expression of certain ribosomal genes and the corresponding proteins...
2016: Frontiers in Microbiology
Sabina Górska, Ewa Dylus, Angelika Rudawska, Ewa Brzozowska, Dagmar Srutkova, Martin Schwarzer, Agnieszka Razim, Hana Kozakova, Andrzej Gamian
The Bifidobacteria show great diversity in the cell surface architecture which may influence the physicochemical properties of the bacterial cell and strain specific properties. The immunomodulatory role of bifidobacteria has been extensively studied, however studies on the immunoreactivity of their protein molecules are very limited. Here, we compared six different methods of protein isolation and purification and we report identification of immunogenic and immunoreactive protein of two human Bifidobacterium longum ssp...
2016: Frontiers in Microbiology
Marion A David, Stéphane Orlowski, Roger K Prichard, Shaima Hashem, François André, Anne Lespine
Macrocyclic lactones (ML) are important anthelmintics used in animals and humans against parasite nematodes, but their therapeutic success is compromised by the spread of ML resistance. Some ABC transporters, such as p-glycoproteins (Pgps), are selected and overexpressed in ML-resistant nematodes, supporting a role for some drug efflux proteins in ML resistance. However, the role of such proteins in ML transport remains to be clarified at the molecular level. Recently, Caenorhabditis elegans Pgp-1 (Cel-Pgp-1) has been crystallized, and its drug-modulated ATPase function characterized in vitro revealed Cel-Pgp-1 as a multidrug transporter...
September 15, 2016: International Journal for Parasitology, Drugs and Drug Resistance
Manuela Viola, Kathrin Brüggemann, Evgenia Karousou, Ilaria Caon, Elena Caravà, Davide Vigetti, Burkhard Greve, Christian Stock, Giancarlo De Luca, Alberto Passi, Martin Götte
Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates...
October 15, 2016: Glycoconjugate Journal
Jenni Firrman, LinShu Liu, Liqing Zhang, Gustavo Arango Argoty, Minqian Wang, Peggy Tomasula, Masuko Kobori, Sherri Pontious, Weidong Xiao
Quercetin is one of the most abundant polyphenols found in fruits and vegetables. The ability of the gut microbiota to metabolize quercetin has been previously documented; however, the effect that quercetin may have on commensal gut microbes remains unclear. In the present study, the effects of quercetin on the commensal gut microbes Ruminococcus gauvreauii, Bifidobacterium catenulatum and Enterococcus caccae were determined through evaluation of growth patterns and cell morphology, and analysis of genetic expression profiles between quercetin treated and non-treated groups using Single Molecule RNA sequencing via Helicos technology...
October 11, 2016: Anaerobe
Karin Förster-Fromme, Sarah Schneider, Georg A Sprenger, Christoph Albermann
OBJECTIVES: To investigate the translocation of nucleotide-activated sugars from the cytosol across a membrane into the endoplasmatic reticulum or the Golgi apparatus which is an important step in the synthesis of glycoproteins and glycolipids in eukaryotes. RESULTS: The heterologous expression of the recombinant and codon-adapted human GDP-L-fucose antiporter gene SLC35C1 (encoding an N-terminal OmpA-signal sequence) led to a functional transporter protein located in the cytoplasmic membrane of Escherichia coli...
October 13, 2016: Biotechnology Letters
Patricia Díaz-Hellín, Victoria Naranjo, Juan Úbeda, Ana Briones
When exposed to mixtures of glucose and fructose, as occurs during the fermentation of grape juice into wine, Saccharomyces cerevisiae uses these sugars at different rates. Moreover, glucose and fructose are transported by the same hexose transporters (HXT), which present a greater affinity for glucose, so that late in fermentation, fructose becomes the predominant sugar. Only a few commercial fermentation activators are available to optimally solve the problems this entails. The aim of this study was to investigate the relation between HXT3 gene expression and fructose/glucose discrepancy in two different media inoculated with a commercial wine strain of S...
December 2016: World Journal of Microbiology & Biotechnology
Hongju Jian, Kun Lu, Bo Yang, Tengyue Wang, Li Zhang, Aoxiang Zhang, Jia Wang, Liezhao Liu, Cunmin Qu, Jiana Li
Sucrose is the principal transported product of photosynthesis from source leaves to sink organs. SUTs/SUCs (sucrose transporters or sucrose carriers) and SWEETs (Sugars Will Eventually be Exported Transporters) play significant central roles in phloem loading and unloading. SUTs/SUCs and SWEETs are key players in sucrose translocation and are associated with crop yields. The SUT/SUC and SWEET genes have been characterized in several plant species, but a comprehensive analysis of these two gene families in oilseed rape has not yet been reported...
2016: Frontiers in Plant Science
Haibo Li, Olivia Schmitz, Hal S Alper
The capacity to co-transport glucose and xylose into yeast has remained a technical challenge in the field. While significant efforts have been made in transporter engineering to increase xylose transport rates, glucose-based inhibition still limit most of these transporters. To address this issue, we further engineer sugar transporter proteins to remove glucose inhibition and enable glucose/xylose co-transport. Specifically, we start with our previously derived CiGXS1 FIM mutant strain and subjugate it to several rounds of mutagenesis and selection in a hexose metabolism null strain...
October 11, 2016: Applied Microbiology and Biotechnology
Jianzhong Xu, Junlan Zhang, Dongdong Liu, Weiguo Zhang
The phosphoenolpyruvate:glucose phosphotransferase system (PTS(Glc)) is the major pathway of glucose uptake in Corynebacterium glutamicum. This study investigated glucose consumption rate, cell growth, and metabolite changes resulting from modification of PTS(Glc). The classical l-lysine producer C. glutamicum XQ-8 exhibited low glucose consumption, cell growth, and l-lysine production rates, whereas these parameters were significantly increased during cultivating on glucose plus maltose, through inactivation of SugR, or by overexpression of PTS(Glc) genes...
July 15, 2016: Canadian Journal of Microbiology
Zahra Gerivani, Elham Vashaee, Hamid Reza Sadeghipour, Mahnaz Aghdasi, Zahra-Sadat Shobbar, Majid Azimmohseni
Tree seed dormancy release by cold stratification accompanies with the embryo increased gluconeogenesis competence. Cyanide also breaks seed dormancy however, integrated information about its effects on carbon metabolism is lacking. Accordingly, the impacts of HCN on germination, lipid gluconeogenesis and sugar transport capacity of walnut (Juglans regia L.) kernels were investigated during 10-days period prior to radicle protrusion. HCN increased walnut kernel germination and within four days of kernel incubation, hastened the decline of starch, reducing and non-reducing sugars and led to greater activities of alkaline invertase and glucose-6-phosphate dehydrogenase...
November 2016: Plant Science: An International Journal of Experimental Plant Biology
Charles W Melnyk
I. II. III. IV. V. VI. VII. VIII. References SUMMARY: The plant vasculature transports water, sugars, hormones, RNAs and proteins. Such critical functions need to be protected from attack by pests and pathogens or from damage by wounding. Plants have developed mechanisms to repair vasculature when such protections fail and to even initiate new vascular connections to tissues supporting symbionts. The developmental phenomena underlying vascular repair and rewiring are therefore critical for horticultural grafting, for plant infection and for mutualist associations with rhizosphere microbes...
September 26, 2016: New Phytologist
Thaila Fernanda Dos Reis, Pollyne Borborema Almeida de Lima, Nádia Skorupa Parachin, Fabiana Bombonato Mingossi, Juliana Velasco de Castro Oliveira, Laure Nicolas Annick Ries, Gustavo Henrique Goldman
BACKGROUND: The conversion of lignocellulosic biomass to biofuels (second-generation biofuel production) is an environmentally friendlier alternative to petroleum-based energy sources. Enzymatic deconstruction of lignocellulose, catalyzed by filamentous fungi such as Aspergillus nidulans, releases a mixture of mono- and polysaccharides, including hexose (glucose) and pentose (xylose) sugars, cellodextrins (cellobiose), and xylooligosaccharides (xylobiose). These sugars can subsequently be fermented by yeast cells to ethanol...
2016: Biotechnology for Biofuels
Tetsuji Moriyama, Shu Tanaka, Yasumune Nakayama, Masahiro Fukumoto, Kenji Tsujimura, Kohji Yamada, Takeshi Bamba, Yoshihiro Yoneda, Eiichiro Fukusaki, Masahiro Oka
Transaldolase 1 (TALDO1) is a rate-limiting enzyme involved in the pentose phosphate pathway, which is traditionally thought to occur in the cytoplasm. In this study, we found that the gene TALDO1 has two translational initiation sites, generating two isoforms that differ by the presence of the first 10 N-terminal amino acids. Notably, the long and short isoforms were differentially localised to the cell nucleus and cytoplasm, respectively. Pull-down and in vitro transport assays showed that the long isoform, unlike the short one, binds to importin α and is actively transported into the nucleus in an importin α/β-dependent manner, demonstrating that the 10 N-terminal amino acids are essential for its nuclear localisation...
October 5, 2016: Scientific Reports
Nadine Schweizer, Thomas Viereckel, Casey J A Smith-Anttila, Karin Nordenankar, Emma Arvidsson, Souha Mahmoudi, André Zampera, Hanna Wärner Jonsson, Jonas Bergquist, Daniel Lévesque, Åsa Konradsson-Geuken, Malin Andersson, Sylvie Dumas, Åsa Wallén-Mackenzie
The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson's disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN...
September 2016: ENeuro
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"