Read by QxMD icon Read


Seung Hyuk Im, Youngmee Jung, Yangsoo Jang, Soo Hyun Kim
Most biomaterials composed of biodegradable polymers will contact either accidentally or consistently with blood and this commonly requires both good  mechanical strength and blood compatibility. Despite this demand, current processing methods still make it difficult and complex to simultaneously improve the two properties. To overcome present limitations, the aim of this work is to develop a solid-state drawing which is a novel method for blood-contact biomaterials that can simultaneously improve the two essential factors of mechanical strength and blood compatibility, as well as induce a micro-patterned surface...
October 24, 2016: Biofabrication
Zhe Wang, Fuwu Zhang, Zhantong Wang, Xiao Fu, Albert Jin, Bryant C Yung, Jing Fan, Xiangyu Yang, Gang Niu, Xiaoyuan Chen
Molecular design of biomaterials with unique features reca-pitulating nature's niche to influence biological activities has been a prolific area of investigation in chemistry and material science. The extracellular matrix (ECM) provides a wealth of bioactive molecules in supporting cell proliferation, migra-tion and differentiation. The well-patterned fibril and inter-twining architecture of the ECM profoundly influences cell behavior and development. Inspired by those features from the ECM, we attempted to integrate essential biological fac-tors from the ECM to design bioactive molecules to construct artificial self-supportive ECM mimics to advance stem cell culture...
October 24, 2016: Journal of the American Chemical Society
Christine Radtke
Spider silk and its synthetic derivatives have a light weight in combination with good strength and elasticity. Their high cytocompatibility and low immunogenicity make them well suited for biomaterial products such as nerve conduits. Silk proteins slowly degrade enzymatically in vivo, thus allowing for an initial therapeutic effect such as in nerve scaffolding to facilitate endogenous repair processes, and then are removed. Silks are biopolymers naturally produced by many species of arthropods including spiders, caterpillars and mites...
October 20, 2016: International Journal of Molecular Sciences
Christian Helbing, Robert Stößel, Dominik A Hering, Matthias Michael Lothar Arras, Jörg Bossert, Klaus D Jandt
Nanostructured surfaces have the potential to influence the assembly as well as the orientation of adsorbed proteins and may, thus, strongly influence the biomaterials performance. For the class of polymeric (bio)materials a reproducible and well characterized nanostructure is the ordered chain folded surface of a polyethylene single crystal (PE-SC). We tested the hypothesis that the trinodal-rod shaped protein human plasma fibrinogen (HPF) adsorbs on the (001) surface of PE-SCs along specific crystallographic directions...
October 24, 2016: Langmuir: the ACS Journal of Surfaces and Colloids
David Mallinson, David L Cheung, Dorin Simionesie, Alexander B Mullen, Zhenyu J Zhang, Dimitrios A Lamprou
Using a combination of experimental and computational approaches, the interaction between anastellin, a recombinant fragment of fibronectin, and representative biomaterial surfaces has been examined. Anastellin and superfibronectin, have been seen to exhibit anti-angiogenic properties and other properties that may make it suitable for consideration for incorporation into biomaterials. The molecular interaction was directly quantified by atomic force microscope (AFM) based force spectroscopy, complemented by adsorption measurements using quartz crystal microbalance (QCM)...
October 24, 2016: Journal of Biomedical Materials Research. Part A
S Thönes, L M Kutz, S Oehmichen, J Becher, K Heymann, A Saalbach, W Knolle, M Schnabelrauch, S Reichelt, U Anderegg
Cryogels made of components of natural extracellular matrix components are potent biomaterials for bioengineering and regenerative medicine. Human dermal fibroblasts are key cells for tissue replacement during wound healing. Thus, any biomaterial for wound healing applications should enable growth, differentiation and matrix synthesis by these cells. Cryogels are highly porous scaffolds consisting of a network of interconnected pores. Here, we used a novel group of cryogels generated from acrylated hyaluronan where the polymerization was initiated by accelerated electrons (E-beam)...
October 20, 2016: International Journal of Biological Macromolecules
Shrikant S Maktedar, Shantilal S Mehetre, Gopal Avashthi, Man Singh
The rapid, robust, scalable and non-hazardous sonochemical approach for in situ reduction and direct functionalization of graphene oxide has been developed for non-toxic biomedical applications. The graphene oxide (GrO) was directly functionalized with tryptamine (TA) without using any hazardous acylating and coupling reagents. The reaction was completed within 20min. An impact of ultrasound was inferred for a direct functionalization with other conventional methods. The evolved electronic states were confirmed with near edge X-ray absorption fine structure (NEXAFS)...
January 2017: Ultrasonics Sonochemistry
Guorui Jin, Jun Li, Kai Li
Photosensitive semiconducting polymer (SP) combined with light stimulation has shown the capability in promoting the proliferation of human dermal fibroblasts (HDFs). However, the high cytotoxicity of the used SP hindered its further application in bioactive scaffolds. In this contribution, we designed and synthesized a SP, poly (N,N-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione-alt-thieno[3,2-b]thiophene) (PDBTT) with low cytotoxicity and strong absorbance in red and near-infrared region (600-1200nm)...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Shanshan Guo, Xiaoying Zhu, Xian Jun Loh
Controlling the adhesion of mammalian and bacterial cells at the interfaces between synthetic materials and biological environments is a real challenge in the biomedical fields such as tissue engineering, antibacterial coating, implantable biomaterials and biosensors. The surface properties of materials are known to profoundly influence the adhesion processes. To mediate the adhesion processes, polymeric coatings have been used to functionalize surfaces to introduce diverse physicochemical properties. The polyelectrolyte multilayer films built via the layer-by-layer (LbL) method, introduced by Moehwald, Decher, and Lvov 20years ago, has led to significant developments ranging from the fundamental understanding of cellular processes to controlling cell adhesion for biomedical applications...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Y Ke, X Y Zhang, S Ramakrishna, L M He, G Wu
Polyhydroxyalkanoates (PHAs) are a class of natural polyesters as carbon and energy reserves by >300 species of microorganisms. They are fully biodegradable, biocompatible and piezoelectric biopolymers that have attracted much attention recently as the biomaterial of choice for medical applications. However, the toughness, processability and hydrophilicity of PHAs need to tune to expand their applications as tissue engineering scaffolds or drug delivery systems. Reactive polymer blending is one of the most economic and versatile way to produce materials combining the desired properties via forming the compatibilizing agents in situ or inducing the chemico-physical interactions between polymer blends...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Jue Hu, Dan Kai, Hongye Ye, Lingling Tian, Xin Ding, Seeram Ramakrishna, Xian Jun Loh
Nerve tissue engineering (TE) requires biomimetic scaffolds providing essential chemical and topographical cues for nerve regeneration. Poly(glycerol sebacate) (PGS) is a biodegradable and elastic polymer that has gained great interest as a TE scaffolding biomaterial. However, uncured PGS is difficult to be electrospun into nanofibers. PGS would, therefore, require the addition of electrospinning agents. In this study, we modified PGS by using atom transfer radical polymerization (ATRP) to synthesize PGS-based copolymers with methyl methacrylate (MMA)...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Xuedan Chen, Qingshan Fu, Yongzhong Jin, Mingtian Li, Ruisong Yang, Xuejun Cui, Min Gong
Porous titanium (PT) is considered as a promising biomaterials for orthopedic implants. Besides biocompatibility and mechanical properties, corrosion resistance in physiological environment is the other important factor affecting the long stability of an implant. In order to investigate the corrosion behavior of porous titanium implants in a dynamic physiological environment, a dynamic circle system was designed in this study. Then a titanium-based implant with PT coating was fabricated by plasma spraying. The corrosion resistance of PT samples in flowing 0...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
M Xiao, Y M Chen, M N Biao, X D Zhang, B C Yang
Bio-functionalization means to endow biomaterials with bio-functions so as to make the materials or devices more suitable for biomedical applications. Traditionally, because of the excellent mechanical properties, the biomedical metals have been widely used in clinic. However, the utilized functions are basically supporting or fixation especially for the implantable devices. Nowadays, some new functions, including bioactivity, anti-tumor, anti-microbial, and so on, are introduced to biomedical metals. To realize those bio-functions on the metallic biomedical materials, surface modification is the most commonly used method...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Sandra Camarero-Espinosa, Justin Cooper-White
Articular cartilage is a mechanically and structurally complex, lubricious tissue that permits load-bearing and frictionless movement of our joints upon articulation. Unfortunately, cartilage is unable to properly self-heal as a result of acute trauma or damage, resulting in many cases in significant pain, reduction in physical activity and quality of life for the patient. Due to the inability of resident cells to repair damaged osteochondral tissue, researchers have focused on utilizing endogenously or exogenously sourced cells (chondrocytes or tissue-derived mesenchymal stem cells), with or without scaffolds, to encourage the secretion of extracellular matrix (ECM) that replicates this highly anisotropic osteochondral tissue, in which the phenotype of the cells and the composition and orientation of the ECM varies along its depth...
October 19, 2016: International Journal of Pharmaceutics
Kadir Ozaltin, Marián Lehocký, Zdenka Kuceková, Petr Humpolíček, Petr Sáha
Polymeric biomaterials are widely used in medical applications owing to their low cost, processability and sufficient toughness. Surface modification by creating a thin film of bioactive agents is promising technique to enhance cellular interactions, regulate the protein adsorption and/or avoid bacterial infections. Polyethylene is one of the most used polymeric biomaterial but its hydrophobic nature impedes its further chemical modifications. Plasma treatment is unique method to increase its hydrophilicity by incorporating hydrophilic oxidative functional groups and tailoring the surface by physical etching...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Shoujie Liu, Hejun Li, Yangyang Su, Qian Guo, Leilei Zhang
Carbon nanotubes (CNTs) possess excellent mechanical properties for their role playing in reinforcement as imparting strength to brittle hydroxyapatite (HA) bioceramic coating. However, there are few reports relating to the in-situ grown carbon nanotubes reinforced hydroxyapatite (CNTs-HA) coating. Here we demonstrate the potential application in reinforcing biomaterials by an attempt to use in-situ grown of CNTs strengthen HA coating, using a combined method composited of injection chemical vapor deposition (ICVD) and pulsed electrodeposition...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Paola Taddei, Silvia Tozzi, Giampaolo Zuccheri, Simona Martinotti, Elia Ranzato, Valeria Chiono, Irene Carmagnola, Masuhiro Tsukada
In this study, composite nanofibrous scaffolds were obtained by electrospinning a trifluoroacetic acid solution containing B. mori silk fibroin (SF) and poly(l-lactic acid) (PLLA) in a 1:1 weight ratio. SF, PLLA and SF/PLLA nanofibres were prepared with average diameter sizes of 360±90nm, 470±240nm and 580±220nm, respectively, as assessed by SEM analysis. Vibrational and thermal analyses showed that upon blending in the SF/PLLA nanofibres, the crystallisation of PLLA was hindered by the presence of SF, which crystallized preferentially and underwent conformational changes that did not significantly change its prevailing β-sheet structure...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Rita Langasco, Barbara Cadeddu, Marilena Formato, Antonio Junior Lepedda, Massimo Cossu, Paolo Giunchedi, Roberto Pronzato, Giovanna Rassu, Renata Manconi, Elisabetta Gavini
The growing interest in the use of recyclable and biodegradable natural materials has become a relevant topic in pharmaceutics. In this work, we suggest the use and valorization of natural horny skeleton of marine sponges (Porifera, Dictyoceratida) as bio-based dressing for topical drug delivery. Biomaterial characterization focusing on morpho-functional traits, swelling behavior, fluid uptake performances, glycosaminoglycans content and composition and microbiological quality assessment was carried out to investigate the collagenic skeleton properties...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Ismail Omrani, Niloofar Babanejad, Hasan Kashef Shendi, Mohammad Reza Nabid
Polyurethanes are important class of biomaterials that are extensively used in medical devices. In spite of their easy synthesis, polyurethanes that are fully degradable in response to the intracellular reducing environment are less explored for controlled drug delivery. Herein, a novel glutathione degradable waterborne polyurethane (WPU) nanocarrier for redox triggered intracellular delivery of a model lipophilic anticancer drug, doxorubicin (DOX) is reported. The WPU was prepared from polyaddition reaction of isophorone diisocyanate (IPDI) and a novel linear polyester polyol involving disulfide linkage, disulfide labeled chain extender, dimethylolpropionic acid (DMPA) using dibutyltin dilaurate (DBTDL) as a catalyst...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Changjiang Pan, Youdong Hu, Yu Hou, Tao Liu, Yuebin Lin, Wei Ye, Yanhua Hou, Tao Gong
In recent years, magnesium alloys are attracting more and more attention as a kind of biodegradable metallic biomaterials, however, their uncontrollable biodegradation speed in vivo and the limited surface biocompatibility hinder their clinical applications. In the present study, with the aim of improving the corrosion resistance and biocompatibility, the magnesium alloy (AZ31B) surface was modified by alkali heating treatment followed by the self-assembly of 3-aminopropyltrimethoxysilane (APTMS). Subsequently, poly (ethylene glycol) (PEG) and fibronectin or fibronectin/heparin complex were sequentially immobilized on the modified surface...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"