Read by QxMD icon Read

"ethylene signaling"

Tong Zhu, Xingguang Deng, Xue Zhou, Lisha Zhu, Lijuan Zou, Pengxu Li, Dawei Zhang, Honghui Lin
Crosstalk between phytohormone pathways is essential in plant growth, development and stress responses. Brassinosteroids (BRs) and ethylene are both pivotal plant growth regulators, and the interaction between these two phytohormones in the tomato response to salt stress is still unclear. Here, we explored the mechanism by which BRs affect ethylene biosynthesis and signaling in tomato seedlings under salt stress. The activity of 1-aminocyclopropane-1-carboxylate synthase (ACS), an ethylene synthesis enzyme, and the ethylene signaling pathway were activated in plants pretreated with BRs...
October 14, 2016: Scientific Reports
Guangchao Liu, Shan Gao, Huiyu Tian, Wenwen Wu, Hélène S Robert, Zhaojun Ding
Auxin is necessary for the inhibition of root growth induced by aluminium (Al) stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC), which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ) in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response...
October 2016: PLoS Genetics
Chao Yang, Wen Li, Jidong Cao, Fanwei Meng, Yongqi Yu, Junkai Huang, Lan Jiang, Muxing Liu, Zhengguang Zhang, Xuewei Chen, Koji Miyamoto, Hisakazu Yamane, Jinsong Zhang, Shouyi Chen, Jun Liu
Ethylene plays diverse roles in plant growth, development and stress responses. However, the roles of ethylene signaling in immune responses remain largely unknown. In this study, we showed that the blast fungus Magnaporthe oryzae infection activated ethylene biosynthesis in rice. Resistant rice cultivars accumulated higher levels of ethylene than susceptible ones. Ethylene signaling components OsEIN2 and the downstream transcription factor OsEIL1 positively regulated disease resistance. Mutation of OsEIN2 led to enhanced disease susceptibility...
October 4, 2016: Plant Journal: for Cell and Molecular Biology
Fan Zhang, Bin Qi, Likai Wang, Bo Zhao, Siddharth Rode, Nathaniel D Riggan, Joseph R Ecker, Hong Qiao
Ethylene gas is essential for many developmental processes and stress responses in plants. EIN2 plays a key role in ethylene signalling but its function remains enigmatic. Here, we show that ethylene specifically elevates acetylation of histone H3K14 and the non-canonical acetylation of H3K23 in etiolated seedlings. The up-regulation of these two histone marks positively correlates with ethylene-regulated transcription activation, and the elevation requires EIN2. Both EIN2 and EIN3 interact with a SANT domain protein named EIN2 nuclear associated protein 1 (ENAP1), overexpression of which results in elevation of histone acetylation and enhanced ethylene-inducible gene expression in an EIN2-dependent manner...
October 3, 2016: Nature Communications
Yan Xia, Chi Kuan, Chien-Hsiang Chiu, Xiao-Jing Chen, Yi-Yin Do, Pung-Ling Huang
Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in the banana genome there are two genes, Mh-ACO1 and Mh-ACO2, that participate in banana fruit ripening. To better understand the physiological functions of Mh-ACO1 and Mh-ACO2, two hairpin-type siRNA expression vectors targeting both the Mh-ACO1 and Mh-ACO2 were constructed and incorporated into the banana genome by Agrobacterium-mediated transformation. The generation of Mh-ACO1 and Mh-ACO2 RNAi transgenic banana plants was confirmed by Southern blot analysis...
2016: International Journal of Molecular Sciences
Kuen-Jin Tsai, Chih-Yu Lin, Chen-Yun Ting, Ming-Che Shih
Ethylene is an essential hormone in plants that is involved in low oxygen and reoxygenation responses. As a key transcription factor in ethylene signaling, ETHYLENE INSENSITIVE 3 (EIN3) activates targets that trigger various responses. However, most of these targets are still poorly characterized. Through analyses of our microarray data and the published Arabidopsis EIN3 ChIP-seq dataset, we inferred the putative targets of EIN3 during anoxia-reoxygenation. Among them, GDH2, which encodes one subunit of glutamate dehydrogenase (GDH), was chosen for further studies for its role in TCA cycle replenishment...
September 27, 2016: Plant Physiology
Emily E Helliwell, Qin Wang, Yinong Yang
Recent studies have suggested that ethylene enhances host resistance to fungal pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Among the six ACS genes in rice, OsACS1 and OsACS2 are induced within 24 hours of inoculation by M. oryzae. This induction occurs simultaneously with an increase in ethylene production that is noticeable 12 hours post inoculation. The purpose of this study was to examine the dynamics of ethylene production and signaling in wild type and RNAi-mediated suppression lines deficient in ethylene production (acs2) or signaling (eil1) after challenge with M...
September 27, 2016: Molecular Plant-microbe Interactions: MPMI
Aaron M Prescott, Forest W McCollough, Bryan L Eldreth, Brad M Binder, Steven M Abel
Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling...
2016: Frontiers in Plant Science
Wei Tang, Yi Zheng, Jing Dong, Jia Yu, Junyang Yue, Fangfang Liu, Xiuhong Guo, Shengxiong Huang, Michael Wisniewski, Jiaqi Sun, Xiangli Niu, Jian Ding, Jia Liu, Zhangjun Fei, Yongsheng Liu
Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis "Hongyang" at immature, mature, and postharvest ripening stages of fruit development, and generated over 66.2 million paired-end and 24.4 million single-end reads. From this dataset, here we have identified 7051 long noncoding RNAs (lncRNAs), 29,327 alternative splicing (AS) events and 2980 novel protein-coding genes that were not annotated in the draft genome of "Hongyang...
2016: Frontiers in Plant Science
Qiang Yan, Xiaoxia Cui, Shuai Lin, Shuping Gan, Han Xing, Daolong Dou
The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family...
2016: PloS One
Chao Geng, Hong-Yan Wang, Jin Liu, Zhi-Yong Yan, Yan-Ping Tian, Xue-Feng Yuan, Rui Gao, Xiang-Dong Li
Tobacco vein banding mosaic virus (TVBMV) is a potyvirus which mainly infects solanaceous crops. The helper component proteinase (HCpro) of a potyvirus is an RNA silencing suppressor protein and determines the severity of disease symptoms caused by different potyviruses, including TVBMV. It has been shown that substitution mutations introduced into the HCpro open reading frame (ORF) in a TVBMV infectious clone result in changes of Asp189 to Lys or Ile250 -Gln251 to Asp-Glu (Asp, aspartic acid; Gln, glutamine; Glu, glutamic acid; Ile, isoleucine)...
August 19, 2016: Molecular Plant Pathology
Fang Wei Yu, Xiao Fang Zhu, Guang Jie Li, Herbert J Kronzucker, Wei Ming Shi
Plastid intramembrane proteases in Arabidopsis (Arabidopsis thaliana) are involved in jasmonic acid biosynthesis, chloroplast development, and flower morphology. Here, we show that Ammonium-Overly-Sensitive1 (AMOS1), a member of the family of plastid intramembrane proteases, plays an important role in the maintenance of phosphate (P) homeostasis under P stress. Loss of function of AMOS1 revealed a striking resistance to P starvation. amos1 plants displayed retarded root growth and reduced P accumulation in the root compared to wild type (Col-0) under P-replete control conditions, but remained largely unaffected by P starvation, displaying comparable P accumulation and root and shoot growth under P-deficient conditions...
October 2016: Plant Physiology
Mortaza Ebrahimi, Siti Nor Akmar Abdullah, Maheran Abdul Aziz, Parameswari Namasivayam
CBF/DREB1 is a group of transcription factors that are mainly involved in abiotic stress tolerance in plants. They belong to the AP2/ERF superfamily of plant-specific transcription factors. A gene encoding a new member of this group was isolated from ripening oil palm fruit and designated as EgCBF3. The oil palm fruit demonstrates the characteristics of a climacteric fruit like tomato, in which ethylene has a major impact on the ripening process. A transgenic approach was used for functional characterization of the EgCBF3, using tomato as the model plant...
September 1, 2016: Journal of Plant Physiology
Chang-Chun Fu, Yan-Chao Han, Xiu-Ye Qi, Wei Shan, Jian-Ye Chen, Wang-Jin Lu, Jian-Fei Kuang
CpERF9 controls papaya fruit ripening through transcriptional repression of cell-wall-modifying genes CpPME1/2 and CpPG5 by directly binding to their promoters. Papaya fruit ripening is an intricate and highly coordinated developmental process which is controlled by the action of ethylene and expression of numerous ethylene-responsive genes. Ethylene response factors (ERFs) representing the last regulators of ethylene-signaling pathway determine the specificities of ethylene response. However, knowledge concerning the transcriptional controlling mechanism of ERF-mediated papaya fruit ripening is limited...
November 2016: Plant Cell Reports
Jinkil Jeong, Keunhwa Kim, Mi E Kim, Hye G Kim, Gwi S Heo, Ohkmae K Park, Youn-Il Park, Giltsu Choi, Eunkyoo Oh
Plant seedlings germinating under the soil are challenged by rough soil grains that can induce physical damage and sudden exposure to light, which can induce photobleaching. Seedlings overcome these challenges by developing apical hooks and by suppressing chlorophyll precursor biosynthesis. These adaptive responses are, respectively, regulated by the phytochrome and ethylene signaling pathways via the PHYTOCHROME-INTERACTING FACTORs (PIFs) and the ETHYLENE INSENSITIVE 3 (EIN3)/EIN3-LIKE transcription factors...
2016: Frontiers in Plant Science
Melanie M A Bisson, Mareike Kessenbrock, Lena Müller, Alexander Hofmann, Florian Schmitz, Simona M Cristescu, Georg Groth
The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species...
August 1, 2016: Scientific Reports
Tong Li, Zhongyu Jiang, Lichao Zhang, Dongmei Tan, Yun Wei, Hui Yuan, Tianlai Li, Aide Wang
Fruit ripening in climacteric fruit requires the gaseous phytohormone ethylene. Although ethylene signaling has been well studied, knowledge of the transcriptional regulation of ethylene biosynthesis is still limited. Here we show that an apple (Malus domestica) ethylene response factor, MdERF2, negative affects ethylene biosynthesis and fruit ripening by suppressing the transcription of MdACS1, a gene that is critical for ripening-related ethylene biosynthesis. MdERF2 expression was suppressed by ethylene during apple fruit ripening, and we observed that MdERF2 bound to the promoter of MdACS1 and directly suppressed its transcription...
August 1, 2016: Plant Journal: for Cell and Molecular Biology
Zhong-Qi Fan, Jian-Fei Kuang, Chang-Chun Fu, Wei Shan, Yan-Chao Han, Yun-Yi Xiao, Yu-Jie Ye, Wang-Jin Lu, Prakash Lakshmanan, Xue-Wu Duan, Jian-Ye Chen
Ethylene plays an essential role in many biological processes including fruit ripening via modulation of ethylene signaling pathway. Ethylene Response Factors (ERFs) are key transcription factors (TFs) involved in ethylene perception and are divided into AP2, RAV, ERF, and DREB sub-families. Although a number of studies have implicated the involvement of DREB sub-family genes in stress responses, little is known about their roles in fruit ripening. In this study, we identified a DREB TF with a EAR motif, designated as MaDEAR1, which is a nucleus-localized transcriptional repressor...
2016: Frontiers in Plant Science
Kenneth M Light, John A Wisniewski, W Andrew Vinyard, Matthew T Kieber-Emmons
The gaseous phytohormone ethylene is implicated in virtually all phases of plant growth and development and thus has a major impact on crop production. This agronomic impact makes understanding ethylene signaling the Philosopher's Stone of the plant biotechnology world in applications including post-harvest transport of foodstuffs, consistency of foodstuff maturity pre-harvest, decorative flower freshness and longevity, and biomass production for biofuel applications. Ethylene is biosynthesized by plants in response to environmental factors and plant life-cycle events, and triggers a signaling cascade that modulates over 1000 genes...
September 2016: Journal of Biological Inorganic Chemistry: JBIC
Hongbo Zhang, Ang Li, Zhijin Zhang, Zejun Huang, Pingli Lu, Dingyu Zhang, Xinmin Liu, Zhong-Feng Zhang, Rongfeng Huang
The phytohormone ethylene plays a crucial role in the production and accumulation of reactive oxygen species (ROS) in plants under stress conditions. Ethylene response factors (ERFs) are important ethylene-signaling regulators functioning in plant defense responses against biotic and abiotic stresses. However, the roles of ERFs during plant adapting to ROS stress have not yet been well documented. Our studies previously reported that a tomato ERF transcription factor TERF1 functions in the regulation of plant ethylene responses and stress tolerance...
2016: Scientific Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"