keyword
MENU ▼
Read by QxMD icon Read
search

chromosome conformation capture

keyword
https://www.readbyqxmd.com/read/27923366/3c-digital-pcr-for-quantification-of-chromatin-interactions
#1
Meijun Du, Liang Wang
BACKGROUND: Chromosome conformation capture (3C) is a powerful and widely used technique for detecting the physical interactions between chromatin regions in vivo. The principle of 3C is to convert physical chromatin interactions into specific DNA ligation products, which are then detected by quantitative polymerase chain reaction (qPCR). However, 3C-qPCR assays are often complicated by the necessity of normalization controls to correct for amplification biases. In addition, qPCR is often limited to a certain cycle number, making it difficult to detect fragment ligations with low frequency...
December 6, 2016: BMC Molecular Biology
https://www.readbyqxmd.com/read/27919068/capturing-pairwise-and-multi-way-chromosomal-conformations-using-chromosomal-walks
#2
Pedro Olivares-Chauvet, Zohar Mukamel, Aviezer Lifshitz, Omer Schwartzman, Noa Oded Elkayam, Yaniv Lubling, Gintaras Deikus, Robert P Sebra, Amos Tanay
Chromosomes are folded into highly compacted structures to accommodate physical constraints within nuclei and to regulate access to genomic information. Recently, global mapping of pairwise contacts showed that loops anchoring topological domains (TADs) are highly conserved between cell types and species. Whether pairwise loops synergize to form higher-order structures is still unclear. Here we develop a conformation capture assay to study higher-order organization using chromosomal walks (C-walks) that link multiple genomic loci together into proximity chains in human and mouse cells...
November 30, 2016: Nature
https://www.readbyqxmd.com/read/27903283/systematic-analysis-of-chromatin-interactions-at-disease-associated-loci-links-novel-candidate-genes-to-inflammatory-bowel-disease
#3
Claartje A Meddens, Magdalena Harakalova, Noortje A M van den Dungen, Hassan Foroughi Asl, Hemme J Hijma, Edwin P J G Cuppen, Johan L M Björkegren, Folkert W Asselbergs, Edward E S Nieuwenhuis, Michal Mokry
BACKGROUND: Genome-wide association studies (GWAS) have revealed many susceptibility loci for complex genetic diseases. For most loci, the causal genes have not been identified. Currently, the identification of candidate genes is predominantly based on genes that localize close to or within identified loci. We have recently shown that 92 of the 163 inflammatory bowel disease (IBD)-loci co-localize with non-coding DNA regulatory elements (DREs). Mutations in DREs can contribute to IBD pathogenesis through dysregulation of gene expression...
November 30, 2016: Genome Biology
https://www.readbyqxmd.com/read/27899641/3d-genome-structure-modeling-by-lorentzian-objective-function
#4
Tuan Trieu, Jianlin Cheng
The 3D structure of the genome plays a vital role in biological processes such as gene interaction, gene regulation, DNA replication and genome methylation. Advanced chromosomal conformation capture techniques, such as Hi-C and tethered conformation capture, can generate chromosomal contact data that can be used to computationally reconstruct 3D structures of the genome. We developed a novel restraint-based method that is capable of reconstructing 3D genome structures utilizing both intra-and inter-chromosomal contact data...
November 29, 2016: Nucleic Acids Research
https://www.readbyqxmd.com/read/27869158/mapping-the-3d-genome-aiming-for-consilience
#5
Job Dekker
The spatial organization of genomes is studied using microscopy- and chromosome conformation capture (3C)-based methods. The two types of methods produce data that are often consistent, but there are cases where they appear discordant. These cases provide opportunities to derive better models of chromatin folding, which can reconcile the datasets.
November 21, 2016: Nature Reviews. Molecular Cell Biology
https://www.readbyqxmd.com/read/27863237/the-ties-that-bind-mapping-the-dynamic-enhancer-promoter-interactome
#6
REVIEW
Cailyn H Spurrell, Diane E Dickel, Axel Visel
Coupling chromosome conformation capture to molecular enrichment for promoter-containing DNA fragments enables the systematic mapping of interactions between individual distal regulatory sequences and their target genes. In this Minireview, we describe recent progress in the application of this technique and related complementary approaches to gain insight into the lineage- and cell-type-specific dynamics of interactions between regulators and gene promoters.
November 17, 2016: Cell
https://www.readbyqxmd.com/read/27856763/normal-chromosome-conformation-depends-on-subtelomeric-facultative-heterochromatin-in-neurospora-crassa
#7
Andrew D Klocko, Tereza Ormsby, Jonathan M Galazka, Neena A Leggett, Miki Uesaka, Shinji Honda, Michael Freitag, Eric U Selker
High-throughput chromosome conformation capture (Hi-C) analyses revealed that the 3D structure of the Neurospora crassa genome is dominated by intra- and interchromosomal links between regions of heterochromatin, especially constitutive heterochromatin. Elimination of trimethylation of lysine 9 on histone H3 (H3K9me3) or its binding partner Heterochromatin Protein 1 (HP1)-both prominent features of constitutive heterochromatin-have little effect on the Hi-C pattern. It remained possible that di- or trimethylation of lysine 27 on histone H3 (H3K27me2/3), which becomes localized in regions of constitutive heterochromatin when H3K9me3 or HP1 are lost, plays a critical role in the 3D structure of the genome...
November 16, 2016: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/27851967/a-compendium-of-chromatin-contact-maps-reveals-spatially-active-regions-in-the-human-genome
#8
Anthony D Schmitt, Ming Hu, Inkyung Jung, Zheng Xu, Yunjiang Qiu, Catherine L Tan, Yun Li, Shin Lin, Yiing Lin, Cathy L Barr, Bing Ren
The three-dimensional configuration of DNA is integral to all nuclear processes in eukaryotes, yet our knowledge of the chromosome architecture is still limited. Genome-wide chromosome conformation capture studies have uncovered features of chromatin organization in cultured cells, but genome architecture in human tissues has yet to be explored. Here, we report the most comprehensive survey to date of chromatin organization in human tissues. Through integrative analysis of chromatin contact maps in 21 primary human tissues and cell types, we find topologically associating domains highly conserved in different tissues...
November 15, 2016: Cell Reports
https://www.readbyqxmd.com/read/27843713/deconvoluting-simulated-metagenomes-the-performance-of-hard-and-soft-clustering-algorithms-applied-to-metagenomic-chromosome-conformation-capture-3c
#9
Matthew Z DeMaere, Aaron E Darling
BACKGROUND: Chromosome conformation capture, coupled with high throughput DNA sequencing in protocols like Hi-C and 3C-seq, has been proposed as a viable means of generating data to resolve the genomes of microorganisms living in naturally occuring environments. Metagenomic Hi-C and 3C-seq datasets have begun to emerge, but the feasibility of resolving genomes when closely related organisms (strain-level diversity) are present in the sample has not yet been systematically characterised...
2016: PeerJ
https://www.readbyqxmd.com/read/27832542/unbiased-interrogation-of-3d-genome-topology-using-chromosome-conformation-capture-coupled-to-high-throughput-sequencing-4c-seq
#10
Rutger W W Brouwer, Mirjam C G N van den Hout, Wilfred F J van IJcken, Eric Soler, Ralph Stadhouders
The development and widespread implementation of chromosome conformation capture (3C) technology has allowed unprecedented new insight into how chromosomes are folded in three-dimensional (3D) space. 3C and its derivatives have contributed tremendously to the now widely accepted view that genome topology plays an important role in many major cellular processes, at a chromosome-wide scale, but certainly also at the level of individual genetic loci. A particularly popular application of 3C technology is to study transcriptional regulation, allowing researchers to draw maps of gene regulatory connections beyond the linear genome through addition of the third dimension...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27791029/crystal-structure-of-the-dna-binding-domain-of-the-transcription-factor-t-bet-suggests-simultaneous-recognition-of-distant-genome-sites
#11
Ce Feng Liu, Gabriel S Brandt, Quyen Q Hoang, Natalia Naumova, Vanja Lazarevic, Eun Sook Hwang, Job Dekker, Laurie H Glimcher, Dagmar Ringe, Gregory A Petsko
The transcription factor T-bet (Tbox protein expressed in T cells) is one of the master regulators of both the innate and adaptive immune responses. It plays a central role in T-cell lineage commitment, where it controls the TH1 response, and in gene regulation in plasma B-cells and dendritic cells. T-bet is a member of the Tbox family of transcription factors; however, T-bet coordinately regulates the expression of many more genes than other Tbox proteins. A central unresolved question is how T-bet is able to simultaneously recognize distant Tbox binding sites, which may be located thousands of base pairs away...
October 25, 2016: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/27789693/3dsnp-a-database-for-linking-human-noncoding-snps-to-their-three-dimensional-interacting-genes
#12
Yiming Lu, Cheng Quan, Hebing Chen, Xiaochen Bo, Chenggang Zhang
The vast noncoding portion of the human genome harbors a rich array of functional elements and disease-causing regulatory variants. Recent high-throughput chromosome conformation capture studies have outlined the principles of these elements interacting and regulating the expression of distal target genes through three-dimensional (3D) chromatin looping. Here we present 3DSNP, an integrated database for annotating human noncoding variants by exploring their roles in the distal interactions between genes and regulatory elements...
October 26, 2016: Nucleic Acids Research
https://www.readbyqxmd.com/read/27770354/chromatin-conformation-capture-based-analysis-of-nuclear-architecture
#13
Stefan Grob, Ueli Grossniklaus
Nuclear organization and higher-order chromosome structure in interphase nuclei are thought to have important effects on fundamental biological processes, including chromosome condensation, replication, and transcription. Until recently, however, nuclear organization could only be analyzed microscopically. The development of chromatin conformation capture (3C)-based techniques now allows a detailed look at chromosomal architecture from the level of individual loci to the entire genome. Here we provide a robust Hi-C protocol, allowing the analysis of nuclear organization in nuclei from different wild-type and mutant plant tissues...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27768699/multiple-pairwise-analysis-of-non-homologous-centromere-coupling-reveals-preferential-chromosome-size-dependent-interactions-and-a-role-for-bouquet-formation-in-establishing-the-interaction-pattern
#14
Philippe Lefrançois, Beth Rockmill, Pingxing Xie, G Shirleen Roeder, Michael Snyder
During meiosis, chromosomes undergo a homology search in order to locate their homolog to form stable pairs and exchange genetic material. Early in prophase, chromosomes associate in mostly non-homologous pairs, tethered only at their centromeres. This phenomenon, conserved through higher eukaryotes, is termed centromere coupling in budding yeast. Both initiation of recombination and the presence of homologs are dispensable for centromere coupling (occurring in spo11 mutants and haploids induced to undergo meiosis) but the presence of the synaptonemal complex (SC) protein Zip1 is required...
October 2016: PLoS Genetics
https://www.readbyqxmd.com/read/27766670/spatial-organization-of-the-schizosaccharomyces-pombe-genome-within-the-nucleus
#15
Atsushi Matsuda, Haruhiko Asakawa, Tokuko Haraguchi, Yasushi Hiraoka
The fission yeast Schizosaccharomyces pombe is a useful experimental system for studying the organization of chromosomes within the cell nucleus. S. pombe has a small genome that is organized into three chromosomes. The small size of the genome and the small number of chromosomes are advantageous for cytological and genome-wide studies of chromosomes; however, the small size of the nucleus impedes microscopic observations owing to limits in spatial resolution during imaging. Recent advances in microscopy, such as super-resolution microscopy, have greatly expanded the use of S...
October 21, 2016: Yeast
https://www.readbyqxmd.com/read/27764097/dynamic-nucleosome-movement-provides-structural-information-of-topological-chromatin-domains-in-living-human-cells
#16
Soya Shinkai, Tadasu Nozaki, Kazuhiro Maeshima, Yuichi Togashi
The mammalian genome is organized into submegabase-sized chromatin domains (CDs) including topologically associating domains, which have been identified using chromosome conformation capture-based methods. Single-nucleosome imaging in living mammalian cells has revealed subdiffusively dynamic nucleosome movement. It is unclear how single nucleosomes within CDs fluctuate and how the CD structure reflects the nucleosome movement. Here, we present a polymer model wherein CDs are characterized by fractal dimensions and the nucleosome fibers fluctuate in a viscoelastic medium with memory...
October 2016: PLoS Computational Biology
https://www.readbyqxmd.com/read/27760553/closing-the-loop-3c-versus-dna-fish
#17
Luca Giorgetti, Edith Heard
Chromosome conformation capture (3C)-based techniques have revolutionized the field of nuclear organization, partly replacing DNA FISH as the method of choice for studying three-dimensional chromosome architecture. Although DNA FISH is commonly used for confirming 3C-based findings, the two techniques are conceptually and technically different and comparing their results is not trivial. Here, we discuss both 3C-based techniques and DNA FISH approaches to highlight their similarities and differences. We then describe the technical biases that affect each approach, and review the available reports that address their compatibility...
October 19, 2016: Genome Biology
https://www.readbyqxmd.com/read/27725694/three-dimensional-reconstruction-of-single-cell-chromosome-structure-using-recurrence-plots
#18
Yoshito Hirata, Arisa Oda, Kunihiro Ohta, Kazuyuki Aihara
Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information...
October 11, 2016: Scientific Reports
https://www.readbyqxmd.com/read/27723753/micro-c-xl-assaying-chromosome-conformation-from-the-nucleosome-to-the-entire-genome
#19
Tsung-Han S Hsieh, Geoffrey Fudenberg, Anton Goloborodko, Oliver J Rando
We present Micro-C XL, an improved method for analysis of chromosome folding at mononucleosome resolution. Using long crosslinkers and isolation of insoluble chromatin, Micro-C XL increases signal-to-noise ratio. Micro-C XL maps of budding and fission yeast genomes capture both short-range chromosome fiber features such as chromosomally interacting domains and higher order features such as centromere clustering. Micro-C XL provides a single assay to interrogate chromosome folding at length scales from the nucleosome to the full genome...
October 10, 2016: Nature Methods
https://www.readbyqxmd.com/read/27706140/formation-of-new-chromatin-domains-determines-pathogenicity-of-genomic-duplications
#20
Martin Franke, Daniel M Ibrahim, Guillaume Andrey, Wibke Schwarzer, Verena Heinrich, Robert Schöpflin, Katerina Kraft, Rieke Kempfer, Ivana Jerković, Wing-Lee Chan, Malte Spielmann, Bernd Timmermann, Lars Wittler, Ingo Kurth, Paola Cambiaso, Orsetta Zuffardi, Gunnar Houge, Lindsay Lambie, Francesco Brancati, Ana Pombo, Martin Vingron, Francois Spitz, Stefan Mundlos
Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology...
October 5, 2016: Nature
keyword
keyword
82925
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"