Read by QxMD icon Read


Ravdeep Kaur, Poonam Yadav, Ashwani Kumar Thukral, Amandeep Walia, Renu Bhardwaj
Plant growth regulator-assisted phytoremediation has been assessed as a novel strategy to improve phytoremediation potential of plants. In the present work, potential of castasterone, a plant growth regulator, combined with citric acid was explored for phytoremediation of cadmium in Brassica juncea seedlings. The seedlings were raised under controlled laboratory conditions for 7 days. Results revealed that 0.6 mM cadmium exposure induced toxicity in the seedlings, which was reflected through root growth inhibition, accumulation of hydrogen peroxide and malondialdehyde, and loss of cell viability...
October 17, 2016: Environmental Science and Pollution Research International
Navdeep Kaur, Kamal Kirat, Shivani Saini, Isha Sharma, Pascal Gantet, Pratap Kumar Pati
Salinity stress is one of the major environmental challenges which adversely affects plant growth and productivity. The acquisition of salinity stress tolerance has been an interesting area of investigation for plant abiotic stress management. Recently, we investigated the interdependency of reactive oxygen species (ROS) generating and scavenging system for offering salt stress adaptation in rice. In continuation to our earlier findings, in the present study we analysed the transcript level expression of different respiratory burst oxidase homologs (Rbohs) genes in salt sensitive and salt tolerant cultivars of rice to corroborate this result with their activities...
October 14, 2016: Plant Signaling & Behavior
Tong Zhu, Xingguang Deng, Xue Zhou, Lisha Zhu, Lijuan Zou, Pengxu Li, Dawei Zhang, Honghui Lin
Crosstalk between phytohormone pathways is essential in plant growth, development and stress responses. Brassinosteroids (BRs) and ethylene are both pivotal plant growth regulators, and the interaction between these two phytohormones in the tomato response to salt stress is still unclear. Here, we explored the mechanism by which BRs affect ethylene biosynthesis and signaling in tomato seedlings under salt stress. The activity of 1-aminocyclopropane-1-carboxylate synthase (ACS), an ethylene synthesis enzyme, and the ethylene signaling pathway were activated in plants pretreated with BRs...
October 14, 2016: Scientific Reports
Rachel S Leisso, Nigel E Gapper, James P Mattheis, Nathanael L Sullivan, Christopher B Watkins, James J Giovannoni, Robert J Schaffer, Jason W Johnston, Ines Hanrahan, Maarten L A T M Hertog, Bart M Nicolaï, David R Rudell
BACKGROUND: 'Honeycrisp' is an apple cultivar that is susceptible to soft scald, a chilling injury expressed as necrotic patches on the peel. Improved understanding of metabolism associated with the disorder would improve our understanding of soft scald and contribute to developing more effective management strategies for apple storage. It was expected that specific gene expression and specific metabolite levels in the peel would be linked with soft scald risk at harvest and/or specific time points during cold storage...
October 12, 2016: BMC Genomics
M Kvasnica, J Oklestkova, V Bazgier, L Rárová, P Korinkova, J Mikulík, M Budesinsky, T Béres, K Berka, Q Lu, E Russinova, M Strnad
We have prepared and studied a series of new brassinosteroid derivatives with a p-substituted phenyl group in the side chain. To obtain the best comparison between molecular docking and biological activities both types of brassinosteroids were synthesized; 6-ketones, 10 examples, and B-lactones, 8 examples. The phenyl group was introduced into the steroid skeleton by Horner-Wadsworth-Emmons. The docking studies were carried out using AutoDock Vina 1.05. Plant biological activities were established using different brassinosteroid bioassays in comparison with natural brassinosteroids...
September 21, 2016: Organic & Biomolecular Chemistry
Neeraj K Lal, Andrew J Fisher, Savithramma P Dinesh-Kumar
Receptor-like cytoplasmic kinases (RLCKs) in Arabidopsis play a central role in the integration of signaling input from various growth and immune signaling pathways. BOTRYTIS-INDUCED KINASE 1 (BIK1), belonging to the RLCK family, is an important player in defense against bacterial and fungal pathogens and in ethylene and brassinosteroid hormone signaling. In this study, the purification and crystallization of a first member of the class VI family of RLCK proteins, BIK1, are reported. BIK1 was crystallized using the microbatch-under-oil method...
October 1, 2016: Acta Crystallographica. Section F, Structural Biology Communications
Qian-Feng Li, Min Xiong, Peng Xu, Li-Chun Huang, Chang-Quan Zhang, Qiao-Quan Liu
Brassinosteroids (BRs), essential plant-specific steroidal hormones, function in a wide spectrum of plant growth and development events, including seed germination. Rice is not only a monocotyledonous model plant but also one of the most important staple food crops of human beings. Rice seed germination is a decisive event for the next-generation of plant growth and successful seed germination is critical for rice yield. However, little is known about the molecular mechanisms on how BR modulates seed germination in rice...
October 5, 2016: Scientific Reports
Yuerong Gao, Chun Liu, Xiaodong Li, Haiqian Xu, Yue Liang, Nan Ma, Zhangjun Fei, Junping Gao, Cai-Zhong Jiang, Chao Ma
Roses are one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone during petal shedding using Illumina technology. We identified a total of 2592 differentially transcribed genes (DTGs) during rose petal shedding. Gene ontology term enrichment and pathway analysis revealed that major biochemical pathways the DTGs were involved in included ethylene biosynthesis, starch degradation, superpathway of cytosolic glycolysis, pyruvate dehydrogenase and TCA cycle, photorespiration and the lactose degradation III pathway...
2016: Frontiers in Plant Science
Stefan Simm, Klaus-Dieter Scharf, Sridharan Jegadeesan, Maria Luisa Chiusano, Nurit Firon, Enrico Schleiff
Phytohormones control the development and growth of plants, as well as their response to biotic and abiotic stress. The seven most well-studied phytohormone classes defined today are as follows: auxins, ethylene, cytokinin, abscisic acid, jasmonic acid, gibberellins, and brassinosteroids. The basic principle of hormone regulation is conserved in all plants, but recent results suggest adaptations of synthesis, transport, or signaling pathways to the architecture and growth environment of different plant species...
2016: Bioinformatics and Biology Insights
Lihong Liu, Haoran Liu, Shuo Li, Xin Zhang, Min Zhang, Ning Zhu, Craig P Dufresne, Sixue Chen, Qiaomei Wang
Fruit ripening is a complex and genetically programmed process. Brassinosteroids (BRs) play an essential role in plant growth and development, including fruit ripening. As a central component of BR signaling, the transcription factor BZR1 is involved in fruit development in tomato. However, the transcriptional network through which BZR1 regulates fruit ripening is mostly unknown. In this study, we use isobaric tags for relative and absolute quantitation (iTRAQ) labeling technology to explore important proteins regulated by BZR1 in two independent tomato transgenic lines over-expressing BZR1-1D at four ripening stages, identifying 411 differentially expressed proteins...
September 29, 2016: Scientific Reports
J N Valitova, A G Sulkarnayeva, F V Minibayeva
Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development...
August 2016: Biochemistry. Biokhimii︠a︡
Bulat Kuluev, Azamat Avalbaev, Elena Mikhaylova, Yuriy Nikonorov, Zoya Berezhneva, Alexey Chemeris
Changes in the expression levels of tobacco expansin genes NtEXPA1, NtEXPA4, NtEXPA5, and NtEXPA6 were studied in different organs of tobacco (Nicotiana tabacum L.) as well as in response to phytohormone and stress treatments. It was shown that NtEXPA1, NtEXPA4 and NtEXPA5 transcripts were predominantly expressed in the shoot apices and young leaves, but almost absent in mature leaves and roots. The NtEXPA6 mRNA was found at high levels in calluses containing a large number of undifferentiated cells, but hardly detectable in the leaves of different ages and roots...
September 9, 2016: Journal of Plant Physiology
Panpan Zhang, Xiaoying Cao, Changgen Li, Zhujun Zheng, Sun Yong, Ji-Hong Jiang
Squalene synthase catalyzes the condensation of 2 molecules of farnesyl diphosphate to produce squalene, the first committed precursor for sterol, brassinosteroid, and triterpene biosynthesis. A squalene synthase gene, designated IoSQS, was isolated from Inonotus obliquus, a medicinal mushroom that produces a plethora of bioactive triterpenes. IoSQS complementary DNA was found to contain an open reading frame of 1476 bp, encoding a protein of 491 amino acids with a calculated molecular mass of 55.85 kDa. The IoSQS genomic DNA sequence consisted of 1813 bp and contained 4 exons and 3 introns...
2016: International Journal of Medicinal Mushrooms
Xin Li, Golam J Ahammed, Zhi-Xin Li, Lan Zhang, Ji-Peng Wei, Chen Shen, Peng Yan, Li-Ping Zhang, Wen-Yan Han
Summer grown green tea is less popular due to bitterness and high astringency, which are attributed to high levels of tea polyphenols (TP) and low levels of amino acids (AA) in tea leaves (Camellia sinensis L.). Brassinosteroids (BRs), a group of steroidal plant hormones can regulate primary and secondary metabolism in a range of plant species under both normal and stress conditions. However, specific effects of BRs on the photosynthesis of tea plants and the quality of summer green tea are largely unknown...
2016: Frontiers in Plant Science
Shah Fahad, Saddam Hussain, Shah Saud, Shah Hassan, Zahid Ihsan, Adnan N Shah, Chao Wu, Muhammad Yousaf, Wajid Nasim, Hesham Alharby, Fahad Alghabari, Jianliang Huang
A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars...
2016: Frontiers in Plant Science
Xiangyu Luo, Jingsheng Zheng, Rongyu Huang, Yumin Huang, Houcong Wang, Liangrong Jiang, Xuanjun Fang
Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development...
September 13, 2016: Plant Cell Reports
Jie Li, Ping Yang, Jungen Kang, Yantai Gan, Jihua Yu, Alejandro Calderón-Urrea, Jian Lyu, Guobin Zhang, Zhi Feng, Jianming Xie
Brassinosteroids (BRs) have positive effects on many processes during plant growth, development, and various abiotic stress responses. However, little information is available regarding the global gene expression of BRs in response to chilling stress in pepper. In this study, we used RNA sequencing to determine the molecular roles of 24-epibrassinolide (EBR) during a chilling stress response. There were 39,829 transcripts, and, among them, 656 were differently-expressed genes (DEGs) following EBR treatment (Chill+EBR) compared with the control (Chill only), including 335 up-regulated and 321 down-regulated DEGs...
2016: Frontiers in Plant Science
Heidy Herrera, Rodrigo Carvajal, Andrés F Olea, Luis Espinoza
An improved synthesis route for obtaining known brassinosteroid analogues, i.e., methyl 2α,3α-dihydroxy-6-oxo-5α-cholan-24-oate (11), methyl 3α-hydroxy-6-oxo-7-oxa-5α-cholan-24-oate (15) and methyl 3α-hydroxy-6-oxa-7-oxo-5α-cholan-24-oate (16), from hyodeoxycholic acid (4) maintaining the native side chain is described. In the alternative procedure, the di-oxidized product 6, obtained in the oxidation of methyl hyodeoxycholate 5, was converted almost quantitatively into the target monoketone 7 by stereoselective reduction with NaBH₄, increasing the overall yield of this synthetic route to 96...
2016: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Arindam Deb, Rumdeep K Grewal, Sudip Kundu
Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus, independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level...
2016: Frontiers in Plant Science
Qixian Rong, Dan Jiang, Yijun Chen, Ye Shen, Qingjun Yuan, Huixin Lin, Liangping Zha, Yan Zhang, Luqi Huang
Salvia miltiorrhiza Bunge, which is also known as a traditional Chinese herbal medicine, is widely studied for its ability to accumulate the diterpene quinone Tanshinones. In addition to producing a variety of diterpene quinone, S. miltiorrhiza Bunge also accumulates sterol, brassinosteroid and triterpenoids. During their biosynthesis, squalene synthase (SQS, EC converts two molecules of the hydrophilic substrate farnesyl diphosphate (FPP) into a hydrophobic product, squalene. In the present study, cloning and characterization of S...
2016: Frontiers in Plant Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"