Read by QxMD icon Read


Yuan Wu, Yun Wang, Xue-Fei Mi, Jun-Xiang Shan, Xin-Min Li, Jian-Long Xu, Hong-Xuan Lin
Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem...
October 2016: PLoS Genetics
N Taimori, D Kahrizi, V Abdossi, A H Papzan
The present study describes the effects of light conditions, different kinds and concentrations of auxins [Naphthylacetic acid (NAA) and dichlorophenoxyacetic acid (2,4-D)] with cytokinin (Kin) in MS medium on callus induction and embryogenesis in Crataegus pseudoheterophylla, C. aronia and C.meyeri. At first leave explants sections were cultured on different combinations of plant growth regulators in dark and light for callus initiation and light conditions to evaluation the percentage and duration of survival, callus diameter, callus fresh weight and dry...
September 30, 2016: Cellular and Molecular Biology
Xiong Liao, Xiao Guo, Qi Wang, Yantao Wang, Di Zhao, Liping Yao, Shuang Wang, Guojie Liu, Tianhong Li
Dehydration-responsive element binding factors (DREBs) play important roles in plant growth, development, and stress signaling pathways in model plants. However, little is known about the function of DREBs in apple (Malus × domestica), a widely cultivated crop that is frequently threatened by drought. We isolated a DREB gene from Malus sieversii (Ledeb.) Roem., MsDREB6.2, and investigated its functions using overexpression analysis and chimeric repressor gene-silencing technology (CRES-T). We identified possible target genes of the protein encoded by MsDREB6...
October 18, 2016: Plant Journal: for Cell and Molecular Biology
Mara Cucinotta, Silvia Manrique, Andrea Guazzotti, Nadia E Quadrelli, Marta A Mendes, Eva Benkova, Lucia Colombo
The developmental program of the pistil is under the control of both auxin and cytokinin, which crosstalk converges on the regulation of the auxin carrier PIN-FORMED 1 (PIN1). Here we show that in the triple transcription factor mutant cytokinin response factor 2 (crf2) crf3 crf6 both pistil length and ovule number were reduced. PIN1 expression was also lower in the triple mutant and the phenotypes couldn't be rescued by exogenous cytokinin application. pin1 complementation studies using genomic PIN1 constructs showed that the pistil phenotypes were only rescued when the PCRE1 domain, to which CRFs bind, was present...
October 13, 2016: Development
Hongju Jian, Kun Lu, Bo Yang, Tengyue Wang, Li Zhang, Aoxiang Zhang, Jia Wang, Liezhao Liu, Cunmin Qu, Jiana Li
Sucrose is the principal transported product of photosynthesis from source leaves to sink organs. SUTs/SUCs (sucrose transporters or sucrose carriers) and SWEETs (Sugars Will Eventually be Exported Transporters) play significant central roles in phloem loading and unloading. SUTs/SUCs and SWEETs are key players in sucrose translocation and are associated with crop yields. The SUT/SUC and SWEET genes have been characterized in several plant species, but a comprehensive analysis of these two gene families in oilseed rape has not yet been reported...
2016: Frontiers in Plant Science
Chao Wu, Kehui Cui, Wencheng Wang, Qian Li, Shah Fahad, Qiuqian Hu, Jianliang Huang, Lixiao Nie, Shaobing Peng
Heat stress causes morphological and physiological changes and reduces crop yield in rice (Oryza sativa). To investigate changes in phytohormones and their relationships with yield and other attributes under heat stress, four rice varieties (Nagina22, Huanghuazhan, Liangyoupeijiu, and Shanyou 63) were grown in pots and subjected to three high temperature treatments plus control in temperature-controlled greenhouses for 15 d during the early reproductive phase. Yield reductions in Nagina22, Huanghuazhan, and Liangyoupeijiu were attributed to reductions in spikelet fertility, spikelets per panicle, and grain weight...
October 7, 2016: Scientific Reports
Xiaozhen Huang, Xiaoyan Zhang, Zhizhong Gong, Shuhua Yang, Yiting Shi
The plant hormone abscisic acid (ABA) plays a crucial role in regulating seed germination and post-germination growth. ABSCISIC ACID INSENSITIVE4 (ABI4), an APETALA2 (AP2)-type transcription factor, is required for the ABA-mediated inhibition of seed germination. Cytokinins promote seed germination and seedling growth by antagonizing ABA signaling. However, the interaction between ABA and cytokinin signaling during seed germination remains unclear. Here, we report that ABA signaling downregulates Arabidopsis response regulators (ARRs), a class of cytokinin-inducible genes, during seed germination and cotyledon greening...
October 6, 2016: Plant Journal: for Cell and Molecular Biology
Eva Žižková, Martin Kubeš, Petre I Dobrev, Pavel Přibyl, Jan Šimura, Lenka Zahajská, Lenka Záveská Drábková, Ondřej Novák, Václav Motyka
BACKGROUND AND AIMS: The metabolism of cytokinins (CKs) and auxins in vascular plants is relatively well understood, but data concerning their metabolic pathways in non-vascular plants are still rather rare. With the aim of filling this gap, 20 representatives of taxonomically major lineages of cyanobacteria and algae from Cyanophyceae, Xanthophyceae, Eustigmatophyceae, Porphyridiophyceae, Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Zygnematophyceae and Klebsormidiophyceae were analysed for endogenous profiles of CKs and auxins and some of them were used for studies of the metabolic fate of exogenously applied radiolabelled CK, [(3)H]trans-zeatin (transZ) and auxin ([(3)H]indole-3-acetic acid (IAA)), and the dynamics of endogenous CK and auxin pools during algal growth and cell division...
October 5, 2016: Annals of Botany
Evelyne Zürcher, Jingchun Liu, Martin di Donato, Markus Geisler, Bruno Müller
Morphogenetic signals control the patterning of multicellular organisms. Cytokinins are mobile signals that are perceived by subsets of plant cells. We found that the responses to cytokinin signaling during Arabidopsis development are constrained by the transporter PURINE PERMEASE 14 (PUP14). In our experiments, the expression of PUP14 was inversely correlated to the cytokinin signaling readout. Loss of PUP14 function allowed ectopic cytokinin signaling accompanied by aberrant morphogenesis in embryos, roots, and the shoot apical meristem...
September 2, 2016: Science
Ian H Street, Dennis E Mathews, Maria V Yamburkenko, Ali Sorooshzadeh, Roshen T John, Ranjan Swarup, Malcolm J Bennett, Joseph J Kieber, G Eric Schaller
Hormonal interactions are critical for plant development. In Arabidopsis, cytokinins inhibit root growth through effects on cell proliferation and cell elongation. Here we define key mechanistic elements in a regulatory network by which cytokinin inhibits root cell elongation in concert with the hormones auxin and ethylene. The auxin importer AUX1 functions as a positive regulator of cytokinin responses in the root, AUX1 mutants specifically affecting the ability of cytokinin to inhibit cell elongation but not cell proliferation...
October 3, 2016: Development
Yuerong Gao, Chun Liu, Xiaodong Li, Haiqian Xu, Yue Liang, Nan Ma, Zhangjun Fei, Junping Gao, Cai-Zhong Jiang, Chao Ma
Roses are one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone during petal shedding using Illumina technology. We identified a total of 2592 differentially transcribed genes (DTGs) during rose petal shedding. Gene ontology term enrichment and pathway analysis revealed that major biochemical pathways the DTGs were involved in included ethylene biosynthesis, starch degradation, superpathway of cytosolic glycolysis, pyruvate dehydrogenase and TCA cycle, photorespiration and the lactose degradation III pathway...
2016: Frontiers in Plant Science
Stefan Simm, Klaus-Dieter Scharf, Sridharan Jegadeesan, Maria Luisa Chiusano, Nurit Firon, Enrico Schleiff
Phytohormones control the development and growth of plants, as well as their response to biotic and abiotic stress. The seven most well-studied phytohormone classes defined today are as follows: auxins, ethylene, cytokinin, abscisic acid, jasmonic acid, gibberellins, and brassinosteroids. The basic principle of hormone regulation is conserved in all plants, but recent results suggest adaptations of synthesis, transport, or signaling pathways to the architecture and growth environment of different plant species...
2016: Bioinformatics and Biology Insights
Zsuzsanna Kolbert, Nóra Lehotai, Árpád Molnár, Gábor Feigl
Elevated levels of selenium (Se) cause toxicity in non-accumulator plant species. The primary reasons for toxic Se effect have been considered to be selenoprotein accumulation and oxidative stress. However, based on our recent paper in Plant Cell Reports and previous literature data we suggest that disturbances in the homeostasis of both reactive oxygen and nitrogen species result in selenium-induced nitro-oxidative stress, contributing to toxicity. The most characteristic symptom of Se exposure is the inhibited root elongation which is partly caused by hormonal disturbances...
October 3, 2016: Plant Signaling & Behavior
Xiaolu Yang, Jinqiang Nian, Qingjun Xie, Jian Feng, Fengxia Zhang, Hongwei Jing, Jian Zhang, Guojun Dong, Yan Liang, Juli Peng, Guodong Wang, Qian Qian, Jianru Zuo
Plants assimilate inorganic nitrogen absorbed from soil into organic forms as Gln and Glu through the glutamine synthetase/glutamine:2-oxoglutarate amidotransferase (GS/GOGAT) cycle. Whereas GS catalyzes the formation of Gln from Glu and ammonia, GOGAT catalyzes the transfer of an amide group from Gln to 2-oxoglutarate to produce two molecules of Glu. However, the regulatory role of the GS/GOGAT cycle in the carbon-nitrogen balance is not well understood. Here, we report the functional characterization of the rice ABNORMAL CYTOKININ RESPONSE 1 (ABC1) gene that encodes an Fd-GOGAT...
September 24, 2016: Molecular Plant
Bulat Kuluev, Azamat Avalbaev, Elena Mikhaylova, Yuriy Nikonorov, Zoya Berezhneva, Alexey Chemeris
Changes in the expression levels of tobacco expansin genes NtEXPA1, NtEXPA4, NtEXPA5, and NtEXPA6 were studied in different organs of tobacco (Nicotiana tabacum L.) as well as in response to phytohormone and stress treatments. It was shown that NtEXPA1, NtEXPA4 and NtEXPA5 transcripts were predominantly expressed in the shoot apices and young leaves, but almost absent in mature leaves and roots. The NtEXPA6 mRNA was found at high levels in calluses containing a large number of undifferentiated cells, but hardly detectable in the leaves of different ages and roots...
September 9, 2016: Journal of Plant Physiology
Ángela María Sánchez-López, Abdellatif Bahaji, Nuria De Diego, Marouane Baslam, Jun Li, Francisco José Muñoz, Goizeder Almagro, Pablo García-Gómez, Kinia Ameztoy Del Amo, Adriana Ricarte-Bermejo, Ondřej Novák, Jan F Humplík, Lukáš Spíchal, Karel Dolezal, Sergio Ciordia, María Del Carmen Mena, Rosana Navajas, Edurne Baroja-Fernández, Javier Pozueta-Romero
Volatile compounds (VCs) emitted by phylogenetically diverse microorganisms (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote photosynthesis, growth and the accumulation of high levels of starch in leaves through cytokinin (CK) regulated processes. In the Arabidopsis plants not exposed to VCs, plastidic phosphoglucose isomerase (pPGI) acts as an important determinant of photosynthesis and growth, likely as a consequence of its involvement in the synthesis of plastidic CKs in roots...
September 23, 2016: Plant Physiology
La Ode Muhammad Muchdar Davis, Nobuo Ogita, Soichi Inagaki, Naoki Takahashi, Masaaki Umeda
Lateral roots (LRs) are an important organ for water and nutrient uptake from soil. Thus, control of LR formation is crucial in the adaptation of plant growth to environmental conditions. However, the underlying mechanism controlling LR formation in response to external factors has remained largely unknown. Here, we found that LR formation was inhibited by DNA damage. Treatment with zeocin, which causes DNA double-strand breaks, up-regulated several DNA repair genes in the LR primordium (LRP) through the signaling pathway mediated by the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1)...
September 23, 2016: Genes to Cells: Devoted to Molecular & Cellular Mechanisms
Fareen Sami, Mohammad Yusuf, Mohammad Faizan, Ahmad Faraz, Shamsul Hayat
Sugars are the most important regulators that facilitate many physiological processes, such as photosynthesis, seed germination, flowering, senescence, and many more under various abiotic stresses. Exogenous application of sugars in low concentration promote seed germination, up regulates photosynthesis, promotes flowering, delayed senescence under various unfavorable environmental conditions. However, high concentration of sugars reverses all these physiological process in a concentration dependent manner...
September 6, 2016: Plant Physiology and Biochemistry: PPB
Arindam Deb, Rumdeep K Grewal, Sudip Kundu
Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus, independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level...
2016: Frontiers in Plant Science
Phapawee Worakan, Netiya Karaket, Nuchada Maneejantra, Kanyaratt Supaibulwatana
Cytokinins are phytohormones that play multiple roles to control plant growth and development. In this study, leaf biomass and the production of andrographolide compounds in a medicinal plant Andrographis paniculata were significantly increased after exogenously treating with the synthetic cytokinin cytokinin-1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU) at 0 (water), 5, or 10 mg L(-1) and observed the results for 24 h, 48 h, and 7 days of treatment. It was found that CPPU could significantly enhance new axillary bud formation and further promote branching 4...
September 9, 2016: Applied Biochemistry and Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"