Read by QxMD icon Read

GABAergic neurons

Daisuke Ono, Ken-Ichi Honma, Yuchio Yanagawa, Akihiro Yamanaka, Sato Honma
In mammals, circadian rhythms, such as sleep/wake cycles, are regulated by the central circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN consists of thousands of individual neurons, which exhibit circadian rhythms. They synchronize with each other and produce robust and stable oscillations. Although several neurotransmitters are expressed in the SCN, almost all SCN neurons are γ-amino butyric acid (GABA)-ergic. Several studies have attempted to understand the roles of GABA in the SCN; however, precise mechanisms of the action of GABA in the SCN are still unclear...
March 20, 2018: Journal of Physiological Sciences: JPS
Chun-Kuei Su, Yi-Yin Chen, Chiu-Ming Ho
Nitric oxide (NO) is a diffusible gas and has multifarious effects on both pre- and postsynaptic events. As a consequence of complex excitatory and inhibitory integrations, NO effects on neuronal activities are heterogeneous. Using in vitro preparations of neonatal rats that retain the splanchnic sympathetic nerves and the thoracic spinal cord as an experimental model, we report here that either enhancement or attenuation of NO production in the neonatal rat spinal cords could increase, decrease, or not change the spontaneous firing behaviors recorded from splanchnic sympathetic single fibers...
2018: Frontiers in Physiology
Hector Zurita, Paul L C Feyen, Alfonso Junior Apicella
Previous studies have shown that parvalbumin-expressing neurons (CC-Parv neurons) connect the two hemispheres of motor and sensory areas via the corpus callosum, and are a functional part of the cortical circuit. Here we test the hypothesis that layer 5 CC-Parv neurons possess anatomical and molecular mechanisms which dampen excitability and modulate the gating of interhemispheric inhibition. In order to investigate this hypothesis we use viral tracing to determine the anatomical and electrophysiological properties of layer 5 CC-Parv and parvalbumin-expressing (Parv) neurons of the mouse auditory cortex (AC)...
2018: Frontiers in Cellular Neuroscience
Xiao-Lin Chou, Xiyue Wang, Zheng-Gang Zhang, Li Shen, Brian Zingg, Junxiang Huang, Wen Zhong, Lukas Mesik, Li I Zhang, Huizhong Whit Tao
Zona incerta (ZI) is a functionally mysterious subthalamic nucleus containing mostly inhibitory neurons. Here, we discover that GABAergic neurons in the rostral sector of ZI (ZIr) directly innervate excitatory but not inhibitory neurons in the dorsolateral and ventrolateral compartments of periaqueductal gray (PAG), which can drive flight and freezing behaviors respectively. Optogenetic activation of ZIr neurons or their projections to PAG reduces both sound-induced innate flight response and conditioned freezing response, while optogenetic suppression of these neurons enhances these defensive behaviors, likely through a mechanism of gain modulation...
March 20, 2018: Nature Communications
Yun-Ting Su, Meng-Yang Gu, Xi Chu, Xiang Feng, Yan-Qin Yu
The GABAergic neurons in the parafacial zone (PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediating this function remain poorly characterized. Here, we performed whole-brain mapping of both the inputs and outputs of the GABAergic neurons in the PZ of the mouse brain. We used the modified rabies virus EnvA-ΔG-DsRed combined with a Cre/loxP gene-expression strategy to map the direct monosynaptic inputs to the GABAergic neurons in the PZ, and found that they receive inputs mainly from the hypothalamic area, zona incerta, and parasubthalamic nucleus in the hypothalamus; the substantia nigra, pars reticulata and deep mesencephalic nucleus in the midbrain; and the intermediate reticular nucleus and medial vestibular nucleus (parvocellular part) in the pons and medulla...
March 20, 2018: Neuroscience Bulletin
Karen Müller Smith
GABAergic interneuron loss, maturational delay or imbalance of glutamatergic to GABAergic signaling has been implicated in several neuropsychiatric disorders including Tourette syndrome and attention-deficit/hyperactivity disorder (ADHD). In schizophrenia, decreases in parvalbumin (PV), somatostatin (Sst) and glutamic acid decarboxylase (GAD) RNA have been observed and seem to indicate a failure in maturation in PV and Sst neurons. In Tourette syndrome, which has a high level of comorbid ADHD, reduced numbers of parvalbumin expressing neurons have been observed in the basal ganglia of affected patients...
March 19, 2018: Attention Deficit and Hyperactivity Disorders
Parthena Soupiadou, Francisco Branoner, Hans Straka
Vestibulo-ocular reflexes (VOR) are mediated by three-neuronal brainstem pathways that transform semicircular canal and otolith sensory signals into motor commands for the contraction of spatially specific sets of eye muscles. The vestibular excitation and inhibition of extraocular motoneurons underlying this reflex is reciprocally organized and allows coordinated activation of particular eye muscles and concurrent relaxation of their antagonistic counterparts. Here, we demonstrate in isolated preparations of Xenopus laevis tadpoles that the discharge modulation of superior oblique motoneurons during cyclic head motion derives from an alternating excitation and inhibition...
March 19, 2018: Journal of Neurology
Ashley C Nelson, Stephanie B Williams, Stephanie S Pistorius, Hyun J Park, Taylor J Woodward, Andrew J Payne, J Daniel Obray, Samuel I Shin, Jennifer K Mabey, Scott C Steffensen
The neural mechanisms underlying alcohol dependence are not well-understood. GABAergic neurons in the ventral tegmental area (VTA) are a relevant target for ethanol. They are inhibited by ethanol at physiologically-relevant levels in vivo and display marked hyperexcitability during withdrawal. In the present study, we examined the effects of the GABA(A) receptor agonist muscimol on VTA neurons ex vivo following withdrawal from acute and chronic ethanol exposure. We used standard cell-attached mode electrophysiology in the slice preparation to evaluate the effects of muscimol on VTA GABA neuron firing rate following exposure to acute and chronic ethanol in male CD-1 GAD-67 GFP mice...
2018: Frontiers in Neuroscience
Timo Saumweber, Astrid Rohwedder, Michael Schleyer, Katharina Eichler, Yi-Chun Chen, Yoshinori Aso, Albert Cardona, Claire Eschbach, Oliver Kobler, Anne Voigt, Archana Durairaja, Nino Mancini, Marta Zlatic, James W Truman, Andreas S Thum, Bertram Gerber
The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron...
March 16, 2018: Nature Communications
Guang-Zhe Huang, Mutsuo Taniguchi, Ye-Bo Zhou, Jing-Ji Zhang, Fumino Okutani, Yoshihiro Murata, Masahiro Yamaguchi, Hideto Kaba
The formation of mate recognition memory in mice is associated with neural changes at the reciprocal dendrodendritic synapses between glutamatergic mitral cell (MC) projection neurons and GABAergic granule cell (GC) interneurons in the accessory olfactory bulb (AOB). Although noradrenaline (NA) plays a critical role in the formation of the memory, the mechanism by which it exerts this effect remains unclear. Here we used extracellular field potential and whole-cell patch-clamp recordings to assess the actions of bath-applied NA (10 µM) on the glutamatergic transmission and its plasticity at the MC-to-GC synapse in the AOB...
April 2018: Learning & Memory
Magdalena Kolasa, Joanna Solich, Agata Faron-Górecka, Dariusz Żurawek, Paulina Pabian, Sylwia Łukasiewicz, Maciej Kuśmider, Kinga Szafran-Pilch, Marta Szlachta, Marta Dziedzicka-Wasylewska
Recently, it has been shown that serotonin 5-HT1A receptor interacts with dopamine D2 receptor in vitro. However, the existence of 5-HT1A -D2 heteromers in native tissue remains unexplored. In the present study, we investigated 5-HT1A -D2 receptor heteromerization in mice treated acutely or chronically with paroxetine (10 mg/kg) or risperidone (0.05 mg/kg). Receptor heteromerization was visualized and quantified in the mouse brain by in situ proximity ligation assay (PLA). Additionally, we aimed to determine the cellular localization of 5-HT1A -D2 receptor heteromers in mouse adult primary neuronal cells by immunofluorescent staining with markers for astrocytes (GFAP) and neurons (NeuN and MAP2)...
March 12, 2018: Neuroscience
Charline Kambrun, Olivier Roca-Lapirot, Chiara Salio, Marc Landry, Aziz Moqrich, Yves Le Feuvre
C-low-threshold mechanoreceptors (C-LTMRs) are sensory neurons that, beyond conveying pleasant touch, modulate nociceptive transmission within the spinal cord. However, pain alleviation by C-LTMRs remains poorly understood. Here, we show that the C-LTMR-derived TAFA4 chemokine induces a reinforcement of inhibitory synaptic transmission within spinal networks, which consequently depresses local excitatory synapses and impairs synaptic transmission from high-threshold C-fibers. In animals with inflammation induced by Freund's complete adjuvant, TAFA4 decreases the noxious stimulus-induced neuronal responses recorded in vivo and alleviates mechanical pain...
March 13, 2018: Cell Reports
Jovana Kovacevic, Gregoire Maroteaux, Desiree Schut, Maarten Loos, Mohit Dubey, Julika Pitsch, Esther Remmelink, Bastijn Koopmans, James Crowley, L Niels Cornelisse, Patrick F Sullivan, Susanne Schoch, Ruud F Toonen, Oliver Stiedl, Matthijs Verhage
De novo heterozygous mutations in STXBP1/Munc18-1 cause early infantile epileptic encephalopathies (EIEE4, OMIM #612164) characterized by infantile epilepsy, developmental delay, intellectual disability, and can include autistic features. We characterized the cellular deficits for an allelic series of seven STXBP1 mutations and developed four mouse models that recapitulate the abnormal EEG activity and cognitive aspects of human STXBP1-encephalopathy. Disease-causing STXBP1 variants supported synaptic transmission to a variable extent on a null background, but had no effect when overexpressed on a heterozygous background...
March 12, 2018: Brain: a Journal of Neurology
Kyle P Lillis, Kevin J Staley
For over a century, epileptic seizures have been characterized as a state of pathological, hypersynchronous brain activity. Anti-epileptic therapies have been developed largely based on the dogma that the altered brain rhythms result from an overabundance of glutamatergic activity or insufficient GABAergic inhibition. The most effective drugs in use today act to globally decrease excitation, increase inhibition, or decrease all activity. Unfortunately, such broad alterations to brain activity often lead to impactful side effects such as mood disordersdrowsiness, cognitive impairment, and sleep disruption...
March 14, 2018: Journal of Neural Engineering
Juan R Martinez-Galan, Ana Verdejo, Elena Caminos
Disturbances in calcium homeostasis due to canonical transient receptor potential (TRPC) and/or store-operated calcium (SOC) channels can play a key role in a large number of brain disorders. TRPC channels are plasma membrane cation channels included in the transient receptor potential (TRP) superfamily. The most widely distributed member of the TRPC subfamily in the brain is TRPC1, which is frequently linked to group I metabotropic glutamate receptors (mGluRs) and to the components of SOC channels. Proposing TRPC/SOC channels as a therapeutic target in neurological diseases previously requires a detailed knowledge of the distribution of such molecules in the brain...
2018: Frontiers in Neuroanatomy
P Zanos, T D Gould
Clinical studies have demonstrated that a single sub-anesthetic dose of the dissociative anesthetic ketamine induces rapid and sustained antidepressant actions. Although this finding has been met with enthusiasm, ketamine's widespread use is limited by its abuse potential and dissociative properties. Recent preclinical research has focused on unraveling the molecular mechanisms underlying the antidepressant actions of ketamine in an effort to develop novel pharmacotherapies, which will mimic ketamine's antidepressant actions but lack its undesirable effects...
March 13, 2018: Molecular Psychiatry
Lei Liu, Wataru Ito, Alexei Morozov
Region and cell-type restricted expression of light-activated ion channels is the indispensable tool to study properties of synapses in specific circuits and to monitor synaptic alterations by various stimuli including neuromodulators and behaviors, both ex vivo and in vivo . These analyses require the light-activated proteins or viral vectors for their delivery that do not interfere with the phenomenon under study. Here, we report a case of such interference in which the high-level expression of channelrhodopsin-2 introduced in the somatostatin-positive GABAergic neurons of the dorsomedial prefrontal cortex by an adeno-associated virus vector weakens the presynaptic GABAb receptor-mediated suppression of GABA release...
April 2018: Neurophotonics
Guillaume Pernelle, Wilten Nicola, Claudia Clopath
Cortical oscillations are thought to be involved in many cognitive functions and processes. Several mechanisms have been proposed to regulate oscillations. One prominent but understudied mechanism is gap junction coupling. Gap junctions are ubiquitous in cortex between GABAergic interneurons. Moreover, recent experiments indicate their strength can be modified in an activity-dependent manner, similar to chemical synapses. We hypothesized that activity-dependent gap junction plasticity acts as a mechanism to regulate oscillations in the cortex...
March 12, 2018: PLoS Computational Biology
Shruti Thapliyal, Amruta Vasudevan, Yongming Dong, Jihong Bai, Sandhya P Koushika, Kavita Babu
The C. elegans ortholog of mammalian calsyntenins, CASY-1, is an evolutionarily conserved type-I transmembrane protein that is highly enriched in the nervous system. Mammalian calsyntenins are strongly expressed at inhibitory synapses, but their role in synapse development and function is still elusive. Here, we report a crucial role for CASY-1 in regulating GABAergic synaptic transmission at the C. elegans neuromuscular junction (NMJ). The shorter isoforms of CASY-1; CASY-1B and CASY-1C, express and function in GABA motor neurons where they regulate GABA neurotransmission...
March 12, 2018: PLoS Genetics
Hai-Qin Huo, Zhuang-Yin Qu, Fang Yuan, Lixiang Ma, Lin Yao, Min Xu, Yao Hu, Jing Ji, Anita Bhattacharyya, Su-Chun Zhang, Yan Liu
The brain of Down syndrome (DS) patients exhibits fewer interneurons in the cerebral cortex, but its underlying mechanism remains unknown. By morphometric analysis of cortical interneurons generated from DS and euploid induced pluripotent stem cells (iPSCs), we found that DS GABA neurons are smaller and with fewer neuronal processes. The proportion of calretinin over calbindin GABA neurons is reduced, and the neuronal migration capacity is decreased. Such phenotypes were replicated following transplantation of the DS GABAergic progenitors into the mouse medial septum...
February 28, 2018: Stem Cell Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"