Read by QxMD icon Read


Takashi Shimokawa, Satoru Yasutaka, Rieko Kominami, Harumichi Shinohara
Axolotls (Ambystoma mexicanum) have the ability to regenerate amputated limbs throughout their life span. During limb regeneration as well as development, undifferentiated cells in the blastema acquire positional information to reproduce the original pattern along three cardinal limb axes: anteroposterior, proximodistal and dorsoventral. In the present study, we attempted to understand the molecular mechanism involved in patterning of axolotl limb development and regeneration along the dorsoventral (DV) axis...
2013: Okajimas Folia Anatomica Japonica
Jamie A Davies, Carolyn E Fisher
Metanephric kidney development begins with the formation of the metanephrogenic mesenchyme; this event depends on the prior action in the intermediate mesoderm of transcription factors such as Lim-1, Pax-2, Eya-1, and Foxc-1. Once it has formed, the mesenchyme secretes GDNF; this induces the nearby wolffian duct to produce a ureteric bud which invades the metanephrogenic mesenchyme and begins to arborize. Ureteric bud development and branching depends on the transcription factor Emx-2, the GDNF-cRet and probably the HGF/cMet, signalling systems, and the intracellular regulatory molecules formin IV and timeless...
2002: Experimental Nephrology
S M Bell, C M Schreiner, W J Scott
We have characterized the early stages of murine hindlimb morphogenesis in the legless (lgl)mutant and non-mutant littermates. Initially the entire ventral ectoderm expresses many genetic markers characteristic of the AER (en-1, fgf-8, msx-2, dlx-2, cd44, and cx-43). Subsequently, the expression domain of most of these genes is restricted to the thickened ectoderm of the disto-ventral limb margin prior to forming an AER. In lgl, the expression of these genes is initiated but not maintained and the disto-ventral marginal ectoderm does not thicken...
June 1998: Mechanisms of Development
J A Cygan, R L Johnson, A P McMahon
Classical embryological experiments have demonstrated that dorsal-ventral patterning of the vertebrate limb is dependent upon ectodermal signals. One such factor is Wnt-7a, a member of the Wnt family of secreted proteins, which is expressed in the dorsal ectoderm. Loss of Wnt-7a results in the appearance of ventral characteristics in the dorsal half of the distal limb. Conversely, En-1, a homeodomain transcription factor, is expressed exclusively in the ventral ectoderm, where it represses Wnt-7a. En-1 mutants have dorsal characteristics in the ventral half of the distal limb...
December 1997: Development
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"