Read by QxMD icon Read

Fmri premotor reach

Floor E Buma, Joost van Kordelaar, Matthijs Raemaekers, Erwin E H van Wegen, Nick F Ramsey, Gert Kwakkel
It is unclear whether additionally recruited sensorimotor areas in the ipsilesional and contralesional hemisphere and the cerebellum can compensate for lost neuronal functions after stroke. The objective of this study was to investigate how increased recruitment of secondary sensorimotor areas is associated with quality of motor control after stroke. In seventeen patients (three females, fourteen males; age: 59.9 ± 12.6 years), cortical activation levels were determined with functional magnetic resonance imaging (fMRI) in 12 regions of interest during a finger flexion-extension task in weeks 6 and 29 after stroke...
July 2016: Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale
Maria Grazia Di Bono, Chiara Begliomini, Umberto Castiello, Marco Zorzi
INTRODUCTION: The quest for a putative human homolog of the reaching-grasping network identified in monkeys has been the focus of many neuropsychological and neuroimaging studies in recent years. These studies have shown that the network underlying reaching-only and reach-to-grasp movements includes the superior parieto-occipital cortex (SPOC), the anterior part of the human intraparietal sulcus (hAIP), the ventral and the dorsal portion of the premotor cortex, and the primary motor cortex (M1)...
November 2015: Brain and Behavior
Giacomo Ariani, Moritz F Wurm, Angelika Lingnau
UNLABELLED: During movement planning, brain activity within parietofrontal networks encodes information about upcoming actions that can be driven either externally (e.g., by a sensory cue) or internally (i.e., by a choice/decision). Here we used multivariate pattern analysis (MVPA) of fMRI data to distinguish between areas that represent (1) abstract movement plans that generalize across the way in which these were driven, (2) internally driven movement plans, or (3) externally driven movement plans...
October 21, 2015: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Frank T M Leoné, Simona Monaco, Denise Y P Henriques, Ivan Toni, W Pieter Medendorp
Reaching to a location in space is supported by a cortical network that operates in a variety of reference frames. Computational models and recent fMRI evidence suggest that this diversity originates from neuronal populations dynamically shifting between reference frames as a function of task demands and sensory modality. In this human fMRI study, we extend this framework to nonmanipulative grasping movements, an action that depends on multiple properties of a target, not only its spatial location. By presenting targets visually or somaesthetically, and by manipulating gaze direction, we investigate how information about a target is encoded in gaze- and body-centered reference frames in dorsomedial and dorsolateral grasping-related circuits...
May 2015: ENeuro
Stefano Meletti, Anna Elisabetta Vaudano, Fabio Pizza, Andrea Ruggieri, Stefano Vandi, Alberto Teggi, Christian Franceschini, Francesca Benuzzi, Paolo Frigio Nichelli, Giuseppe Plazzi
UNLABELLED: The brain suprapontine mechanisms associated with human cataplexy have not been clarified. Animal data suggest that the amygdala and the ventromedial prefrontal cortex are key regions in promoting emotion-induced cataplectic attacks. Twenty-one drug-naive children/adolescent (13 males, mean age 11 years) with recent onset of narcolepsy type 1 (NT1) were studied with fMRI while viewing funny videos using a "naturalistic" paradigm. fMRI data were acquired synchronously with EEG, mylohyoid muscle activity, and the video of the patient's face...
August 19, 2015: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Svetlana Pundik, Jessica P McCabe, Ken Hrovat, Alice Erica Fredrickson, Curtis Tatsuoka, I Jung Feng, Janis J Daly
OBJECTIVES: Neuroplastic changes that drive recovery of shoulder/elbow function after stroke have been poorly understood. The purpose of this study was to determine the relationship between neuroplastic brain changes related to shoulder/elbow movement control in response to treatment and recovery of arm motor function in chronic stroke survivors. METHODS: Twenty-three chronic stroke survivors were treated with 12 weeks of arm rehabilitation. Outcome measures included functional Magnetic Resonance Imaging (fMRI) for the shoulder/elbow components of reach and a skilled motor function test (Arm Motor Abilities Test, AMAT), collected before and after treatment...
2015: Frontiers in Human Neuroscience
Hanna Gertz, Katja Fiehler
Previous research on reach planning in humans has implicated a frontoparietal network, including the precuneus (PCu), a putative human homolog of the monkey parietal reach region (PRR), and the dorsal premotor cortex (PMd). Using a pro-/anti-reach task, electrophysiological studies in monkeys have demonstrated that the movement goal rather than the location of the visual cue is encoded in PRR and PMd. However, if only the effector but not the movement goal is specified (underspecified condition), the PRR and PMd have been shown to represent all potential movement goals...
July 2015: Journal of Neurophysiology
W Dale Stevens, Michael Henry Tessler, Cynthia S Peng, Alex Martin
One of the most robust and oft-replicated findings in cognitive neuroscience is that several spatially distinct, functionally dissociable ventral occipitotemporal cortex (VOTC) regions respond preferentially to different categories of concrete entities. However, the determinants of this category-related organization remain to be fully determined. One recent proposal is that privileged connectivity of these VOTC regions with other regions that store and/or process category-relevant properties may be a major contributing factor...
June 2015: Human Brain Mapping
Giorgia Committeri, Simona Cirillo, Marcello Costantini, Gaspare Galati, Gian Luca Romani, Tiziana Aureli
Pointing is a communicative gesture, commonly used for expressing two main intentions: imperative, to obtain a desired object/action from the other, or declarative, to share attention/interest about a referent with the other. Previous neuroimaging research on adults examined pointing almost exclusively as a reaching-like motor act rather than as a communicative gesture. Here, we used fMRI to record brain activity while 16 participants produced either imperative or declarative pointing gestures within a communicative context...
April 1, 2015: NeuroImage
A L Jouen, T M Ellmore, C J Madden, C Pallier, P F Dominey, J Ventre-Dominey
This research tests the hypothesis that comprehension of human events will engage an extended semantic representation system, independent of the input modality (sentence vs. picture). To investigate this, we examined brain activation and connectivity in 19 subjects who read sentences and viewed pictures depicting everyday events, in a combined fMRI and DTI study. Conjunction of activity in understanding sentences and pictures revealed a common fronto-temporo-parietal network that included the middle and inferior frontal gyri, the parahippocampal-retrosplenial complex, the anterior and middle temporal gyri, the inferior parietal lobe in particular the temporo-parietal cortex...
February 1, 2015: NeuroImage
Scott H Frey, Marc Hansen, Noah Marchal
Evidence implicates ventral parieto-premotor cortices in representing the goal of grasping independent of the movements or effectors involved [Umilta, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., et al. When pliers become fingers in the monkey motor system. Proceedings of the National Academy of Sciences, U.S.A., 105, 2209-2213, 2008; Tunik, E., Frey, S. H., & Grafton, S. T. Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience, 8, 505-511, 2005]...
June 2015: Journal of Cognitive Neuroscience
Chiara Begliomini, Teresa De Sanctis, Mattia Marangon, Vincenza Tarantino, Luisa Sartori, Diego Miotto, Raffaella Motta, Roberto Stramare, Umberto Castiello
Experimental evidence suggests the existence of a sophisticated brain circuit specifically dedicated to reach-to-grasp planning and execution, both in human and non-human primates (Castiello, 2005). Studies accomplished by means of neuroimaging techniques suggest the hypothesis of a dichotomy between a "reach-to-grasp" circuit, involving the anterior intraparietal area, the dorsal and ventral premotor cortices (PMd and PMv - Castiello and Begliomini, 2008; Filimon, 2010) and a "reaching" circuit involving the medial intraparietal area and the superior parieto-occipital cortex (Culham et al...
2014: Frontiers in Human Neuroscience
Nicholas F Wymbs, Scott T Grafton
Motor sequence learning is associated with increasing and decreasing motor system activity. Here, we ask whether sequence-specific activity is contingent upon the time interval and absolute amount of training over which the skill is acquired. We hypothesize that within each motor region, the strength of any sequence representation is a non-linear function that can be characterized by 3 timescales. We had subjects train for 6 weeks and measured brain activity with functional magnetic resonance imaging. We used repetition suppression (RS) to isolate sequence-specific representations while controlling for effects related to kinematics and general task familiarity...
November 2015: Cerebral Cortex
Flavia Filimon, Cory A Rieth, Martin I Sereno, Garrison W Cottrell
Previous functional magnetic resonance imaging (fMRI) research on action observation has emphasized the role of putative mirror neuron areas such as Broca's area, ventral premotor cortex, and the inferior parietal lobule. However, recent evidence suggests action observation involves many distributed cortical regions, including dorsal premotor and superior parietal cortex. How these different regions relate to traditional mirror neuron areas, and whether traditional mirror neuron areas play a special role in action representation, is unclear...
September 2015: Cerebral Cortex
Sara Fabbri, Lukas Strnad, Alfonso Caramazza, Angelika Lingnau
To grasp an object, we need to move the arm toward it and assume the appropriate hand configuration. While previous studies suggested dorsomedial and dorsolateral pathways in the brain specialized respectively for the transport and grip components, more recent studies cast doubt on such a clear-cut distinction. It is unclear, however, to which degree neuronal populations selective for the two components overlap, and if so, to which degree they interact. Here, we used multivoxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data to investigate the representation of three center-out movements (touch, pincer grip, whole-hand grip) performed in five reach directions...
July 1, 2014: NeuroImage
Annalisa Tosoni, Maurizio Corbetta, Cinzia Calluso, Giorgia Committeri, Giovanni Pezzulo, G L Romani, Gaspare Galati
During simple perceptual decisions, sensorimotor neurons in monkey fronto-parietal cortex represent a decision variable that guides the transformation of sensory evidence into a motor response, supporting the view that mechanisms for decision-making are closely embedded within sensorimotor structures. Within these structures, however, decision signals can be dissociated from motor signals, thus indicating that sensorimotor neurons can play multiple and independent roles in decision-making and action selection/planning...
April 2014: European Journal of Neuroscience
Fang Cui, Dan Arnstein, Rajat Mani Thomas, Natasha M Maurits, Christian Keysers, Valeria Gazzola
Some theories of motor control suggest efference-copies of motor commands reach somatosensory cortices. Here we used functional magnetic resonance imaging to test these models. We varied the amount of efference-copy signal by making participants squeeze a soft material either actively or passively. We found electromyographical recordings, an efference-copy proxy, to predict activity in primary somatosensory regions, in particular Brodmann Area (BA) 2. Partial correlation analyses confirmed that brain activity in cortical structures associated with motor control (premotor and supplementary motor cortices, the parietal area PF and the cerebellum) predicts brain activity in BA2 without being entirely mediated by activity in early somatosensory (BA3b) cortex...
2014: PloS One
Claire K Naughtin, Benjamin J Tamber-Rosenau, Paul E Dux
Individuation refers to individuals' use of spatial and temporal properties to register an object as a distinct perceptual event relative to other stimuli. Although behavioral studies have examined both spatial and temporal individuation, neuroimaging investigations of individuation have been restricted to the spatial domain and at relatively late stages of information processing. In this study we used univariate and multivoxel pattern analyses of functional magnetic resonance imaging data to identify brain regions involved in individuating temporally distinct visual items and the neural consequences that arise when this process reaches its capacity limit (repetition blindness, RB)...
February 2014: Journal of Neurophysiology
Marina Stosic, Marcel Brass, Nicole Van Hoeck, Ning Ma, Frank Van Overwalle
Recent fMRI studies indicate that the posterior superior temporal sulcus (pSTS) and the mirror system are involved in analyzing goal-directed actions performed by non-human objects. However, these studies have some limitations: the animations showed moving shapes that resemble humans and human movement, or showed the interaction of two moving shapes rather than one alone. This may have prompted participants to assume a human agent instead of an object. To avoid this potential confound, in this study, animations showed a small circular shape (agent) jumping toward a bigger circular shape (goal) with an obstacle separating them...
February 1, 2014: NeuroImage
Chiara Renzi, Emiliano Ricciardi, Daniela Bonino, Giacomo Handjaras, Tomaso Vecchi, Pietro Pietrini
In the presence of vision, finalized motor acts can trigger spatial remapping, i.e., reference frames transformations to allow for a better interaction with targets. However, it is yet unclear how the peripersonal space is encoded and remapped depending on the availability of visual feedback and on the target position within the individual's reachable space, and which cerebral areas subserve such processes. Here, functional magnetic resonance imaging (fMRI) was used to examine neural activity while healthy young participants performed reach-to-grasp movements with and without visual feedback and at different distances of the target from the effector (near to the hand-about 15 cm from the starting position-vs...
2013: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"