Read by QxMD icon Read

3D organoid

Bing-Ying Xie, Ai-Wen Wu
BACKGROUND: Colorectal cancer (CRC) is a heterogeneous disease; current research relies on cancer cell lines and animal cancer models, which may not precisely imitate inner human tumors and guide clinical medicine. The purpose of our study was to explore and further improve the process of producing three-dimensional (3D) organoid model and impel the development of personalized therapy. METHODS: We subcutaneously injected surgically resected CRC tissues from a patient into BALB/c-nu mice to build patient-derived xenografts (PDXs)...
2016: Chinese Medical Journal
Brigham J Hartley, Kristen J Brennand
Human induced pluripotent stem cells (hiPSCs) can theoretically yield limitless supplies of cells fated to any cell type that comprise the human organism, making them a new tool by which to potentially overcome caveats in current biomedical research. In vitro derivation of central nervous system (CNS) cell types has the potential to provide material for drug discovery and validation, safety and toxicity assays, cell replacement therapy and the elucidation of previously unknown disease mechanisms. However, current two-dimensional (2D) CNS differentiation protocols do not faithfully recapitulate the spatial organization of heterogeneous tissue, nor the cell-cell interactions, cell-extracellular matrix interactions, or specific physiological functions generated within complex tissue such as the brain...
October 12, 2016: Neurochemistry International
Adrian Ranga, Mehmet Girgin, Andrea Meinhardt, Dominic Eberle, Massimiliano Caiazzo, Elly M Tanaka, Matthias P Lutolf
Three-dimensional organoid constructs serve as increasingly widespread in vitro models for development and disease modeling. Current approaches to recreate morphogenetic processes in vitro rely on poorly controllable and ill-defined matrices, thereby largely overlooking the contribution of biochemical and biophysical extracellular matrix (ECM) factors in promoting multicellular growth and reorganization. Here, we show how defined synthetic matrices can be used to explore the role of the ECM in the development of complex 3D neuroepithelial cysts that recapitulate key steps in early neurogenesis...
October 14, 2016: Proceedings of the National Academy of Sciences of the United States of America
Mirko Nowak, Uwe Freudenberg, Mikhail V Tsurkan, Carsten Werner, Kandice R Levental
Matrix systems used to study complex three-dimensional (3D) cellular processes like mammary epithelial tissue morphogenesis and tumorigenesis ex vivo often require ill-defined biological components, which lead to poor reproducibility and a lack of control over physical parameters. In this study, a well-defined, tunable synthetic biohybrid hydrogel composed of the glycosaminoglycan heparin, star-shaped poly(ethylene glycol) (starPEG), and matrix metalloproteinase- (MMP-) cleavable crosslinkers was applied to dissect the biophysical and biochemical signals promoting human mammary epithelial cell (MEC) morphogenesis...
October 6, 2016: Biomaterials
Youngjin Kim, Hyeongseok Kim, Ung Hyun Ko, Youjin Oh, Ajin Lim, Jong-Woo Sohn, Jennifer H Shin, Hail Kim, Yong-Mahn Han
Insulin secretion is elaborately modulated in pancreatic ß cells within islets of three-dimensional (3D) structures. Using human pluripotent stem cells (hPSCs) to develop islet-like structures with insulin-producing ß cells for the treatment of diabetes is challenging. Here, we report that pancreatic islet-like clusters derived from hESCs are functionally capable of glucose-responsive insulin secretion as well as therapeutic effects. Pancreatic hormone-expressing endocrine cells (ECs) were differentiated from hESCs using a step-wise protocol...
October 12, 2016: Scientific Reports
Asako Tajima, Isha Pradhan, Xuehui Geng, Massimo Trucco, Yong Fan
One of the hallmarks of modern medicine is the development of therapeutics that can modulate immune responses, especially the adaptive arm of immunity, for disease intervention and prevention. While tremendous progress has been made in the past decades, manipulating the thymus, the primary lymphoid organ responsible for the development and education of T lymphocytes, remains a challenge. One of the major obstacles is the difficulty to reproduce its unique extracellular matrix (ECM) microenvironment that is essential for maintaining the function and survival of thymic epithelial cells (TECs), the predominant population of cells in the thymic stroma...
October 12, 2016: Methods in Molecular Biology
Shuji Hibiya, Kiichiro Tsuchiya, Ryohei Hayashi, Keita Fukushima, Nobukatsu Horita, Sho Watanabe, Tomoaki Shirasaki, Ryu Nishimura, Natsuko Kimura, Tatsunori Nishimura, Noriko Gotoh, Shigeru Oshima, Ryuichi Okamoto, Tetsuya Nakamura, Mamoru Watanabe
BACKGROUND & AIMS: Patients with ulcerative colitis (UC) are at an increased risk of developing colitis-associated cancer (CAC), suggesting that continuous inflammation in the colon promotes the transformation of colonic epithelial cells. However, the mechanisms underlying cell transformation in UC remain unknown. We therefore aimed to investigate the effect of long-term inflammation on intestinal epithelial cells (IECs) using organoid culture. METHODS: IECs were isolated from mice colon, and were cultured according to a method for a three-dimensional (3D) organoid culture...
October 11, 2016: Journal of Crohn's & Colitis
Martin R Schmuck, Thomas Temme, Katharina Dach, Denise de Boer, Marta Barenys, Farina Bendt, Axel Mosig, Ellen Fritsche
Current developmental neurotoxicity (DNT) testing in animals faces major limitations, such as high cost and time demands as well as uncertainties in their methodology, evaluation and regulation. Therefore, the use of human-based 3D in vitro systems in combination with high-content image analysis (HCA) might contribute to DNT testing with lower costs, increased throughput and enhanced predictivity for human hazard identification. Human neural progenitor cells (hNPCs) grown as 3D neurospheres mimic basic processes of brain development including hNPC migration and differentiation and are therefore useful for DNT hazard identification...
October 8, 2016: Archives of Toxicology
Jinwook Choi, Elhadi Iich, Joo-Hyeon Lee
The remarkable regenerative capacity of the lung suggests that stem cells could be of therapeutic importance in diverse lung diseases; however, the successful exploitation of lung stem cell biology has long been hampered by our inability to maintain and expand adult lung stem cells while retaining their multi-lineage potential in vitro. Recently, advances in our understanding of stem cell niches and the role of key signalling modulators in controlling stem cell maintenance and differentiation have fuelled the development of new in vitro three-dimensional (3D) culture technologies that sustain the stem cell-driven formation of near-physiological, self-organizing structures called organoids...
October 3, 2016: Developmental Biology
Yu Shrike Zhang, Andrea Arneri, Simone Bersini, Su-Ryon Shin, Kai Zhu, Zahra Goli-Malekabadi, Julio Aleman, Cristina Colosi, Fabio Busignani, Valeria Dell'Erba, Colin Bishop, Thomas Shupe, Danilo Demarchi, Matteo Moretti, Marco Rasponi, Mehmet Remzi Dokmeci, Anthony Atala, Ali Khademhosseini
Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium...
December 2016: Biomaterials
Holly Yu Chen, Koray Dogan Kaya, Lijin Dong, Anand Swaroop
PURPOSE: The generation of three-dimensional (3D) organoids with optic cup-like structures from pluripotent stem cells has created opportunities for investigating mammalian retinal development in vitro. However, retinal organoids in culture do not completely reflect the developmental state and in vivo architecture of the rod-dominant mouse retina. The goals of this study were to develop an efficient protocol for generating retinal organoids from stem cells and examine the morphogenesis of rods in vitro...
2016: Molecular Vision
Sina Bartfeld
Advances in stem cell research have allowed the development of 3-dimensional (3D) primary cell cultures termed organoid cultures, as they closely mimic the in vivo organization of different cell lineages. Bridging the gap between 2-dimensional (2D) monotypic cancer cell lines and whole organisms, organoids are now widely applied to model development and disease. Organoids hold immense promise for addressing novel questions in host-microbe interactions, infectious diseases and the resulting inflammatory conditions...
September 14, 2016: Developmental Biology
Eliza L S Fong, Daniel A Harrington, Mary C Farach-Carson, Hanry Yu
Numerous studies to date have contributed to a paradigm shift in modeling cancer, moving from the traditional two-dimensional culture system to three-dimensional (3D) culture systems for cancer cell culture. This led to the inception of tumor engineering, which has undergone rapid advances over the years. In line with the recognition that tumors are not merely masses of proliferating cancer cells but rather, highly complex tissues consisting of a dynamic extracellular matrix together with stromal, immune and endothelial cells, significant efforts have been made to better recapitulate the tumor microenvironment in 3D...
November 2016: Biomaterials
Walter Chingwaru, Richard H Glashoff, Jerneja Vidmar, Petrina Kapewangolo, Samantha L Sampson
Mycobacterium tuberculosis and human immunodeficiency virus (HIV) co-infections have remained a major public health concern worldwide, particularly in Southern Africa. Yet our understanding of the molecular interactions between the pathogens has remained poor due to lack of suitable preclinical models for such studies. We reviewed the use, this far, of mammalian cell culture models in HIV-MTB interaction studies. Studies have described the use of primary human cell cultures, including (1) monocyte-derived macrophage (MDM) fractions of peripheral blood mononuclear cell (PBMC), alveolar macrophages (AM), (2) cell lines such as the monocyte-derived macrophage cell line (U937), T lymphocyte cell lines (CEMx174, ESAT-6-specific CD4(+) T-cells) and an alveolar epithelial cell line (A549) and (3) special models such as stem cells, three dimensional (3D) or organoid cell models (including a blood-brain barrier cell model) in HIV-MTB interaction studies...
September 2016: Asian Pacific Journal of Tropical Medicine
Hayley E Francies, Andrew Barthorpe, Anne McLaren-Douglas, William J Barendt, Mathew J Garnett
Drug sensitivity testing utilizing preclinical disease models such as cancer cell lines is an important and widely used tool for drug development. Importantly, when combined with molecular data such as gene copy number variation or somatic coding mutations, associations between drug sensitivity and molecular data can be used to develop markers to guide patient therapies. The use of organoids as a preclinical cancer model has become possible following recent work demonstrating that organoid cultures can be derived from patient tumors with a high rate of success...
September 15, 2016: Methods in Molecular Biology
Waseem K Raja, Alison E Mungenast, Yuan-Ta Lin, Tak Ko, Fatema Abdurrob, Jinsoo Seo, Li-Huei Tsai
The dismal success rate of clinical trials for Alzheimer's disease (AD) motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe...
2016: PloS One
Rachel E DeJonge, Xiao-Ping Liu, Christopher R Deig, Stefan Heller, Karl R Koehler, Eri Hashino
Stem cell-derived inner ear sensory epithelia are a promising source of tissues for treating patients with hearing loss and dizziness. We recently demonstrated how to generate inner ear sensory epithelia, designated as inner ear organoids, from mouse embryonic stem cells (ESCs) in a self-organizing 3D culture. Here we improve the efficiency of this culture system by elucidating how Wnt signaling activity can drive the induction of otic tissue. We found that a carefully timed treatment with the potent Wnt agonist CHIR99021 promotes induction of otic vesicles-a process that was previously self-organized by unknown mechanisms...
2016: PloS One
Hyun-Soo Shin, Yun-Min Kook, Hye Jin Hong, Young-Mo Kim, Won-Gun Koh, Jae-Yol Lim
: Development of a tissue-engineered, salivary bio-gland will benefit patients suffering from xerostomia due to loss of fluid-secreting acinar cells. This study was conducted to develop a bioengineering system to induce self-assembly of human parotid epithelial cells (hPECs) cultured on poly ethylene glycol (PEG) hydrogel-micropatterned polycaprolactone (PCL) nanofibrous microwells. Microwells were fabricated by photopatterning of PEG hydrogel in the presence of an electrospun PCL nanofibrous scaffold...
November 2016: Acta Biomaterialia
Monica Bartucci, Anna C Ferrari, Isaac Yi Kim, Alexander Ploss, Martin Yarmush, Hatem E Sabaawy
[This corrects the article DOI: 10.3389/fcell.2016.00064.].
2016: Frontiers in Cell and Developmental Biology
Zhongwei Li, Toshikazu Araoka, Jun Wu, Hsin-Kai Liao, Mo Li, Marta Lazo, Bing Zhou, Yinghui Sui, Min-Zu Wu, Isao Tamura, Yun Xia, Ergin Beyret, Taiji Matsusaka, Ira Pastan, Concepcion Rodriguez Esteban, Isabel Guillen, Pedro Guillen, Josep M Campistol, Juan Carlos Izpisua Belmonte
Transit-amplifying nephron progenitor cells (NPCs) generate all of the nephrons of the mammalian kidney during development. Their limited numbers, poor in vitro expansion, and difficult accessibility in humans have slowed basic and translational research into renal development and diseases. Here, we show that with appropriate 3D culture conditions, it is possible to support long-term expansion of primary mouse and human fetal NPCs as well as NPCs derived from human induced pluripotent stem cells (iPSCs). Expanded NPCs maintain genomic stability, molecular homogeneity, and nephrogenic potential in vitro, ex vivo, and in vivo...
October 6, 2016: Cell Stem Cell
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"