Read by QxMD icon Read

Olaparib ovarian

Francesca Vena, Ruochen Jia, Arman Esfandiari, Juan J Garcia-Gomez, Manuel Rodriguez-Justo, Jianguo Ma, Sakeena Syed, Lindsey Crowley, Brian Elenbaas, Samantha Goodstal, John A Hartley, Daniel Hochhauser
Targeting the DNA damage response (DDR) in tumors with defective DNA repair is a clinically successful strategy. The RAS/RAF/MEK/ERK signalling pathway is frequently deregulated in human cancers. In this study, we explored the effects of MEK inhibition on the homologous recombination pathway and explored the potential for combination therapy of MEK inhibitors with DDR inhibitors and a hypoxia-activated prodrug. We studied effects of combining pimasertib, a selective allosteric inhibitor of MEK1/2, with olaparib, a small molecule inhibitor of poly (adenosine diphosphate [ADP]-ribose) polymerases (PARP), and with the hypoxia-activated prodrug evofosfamide in ovarian and pancreatic cancer cell lines...
February 20, 2018: Oncotarget
Pingping Fang, Jill A Madden, Lisa Neums, K Ryan Moulder, M Laird Forrest, Jeremy Chien
FOXM1 transcription factor network is activated in over 84% of cases in high-grade serous ovarian cancer (HGSOC), and FOXM1 upregulates the expression of genes involved in the homologous recombination (HR) DNA damage and repair (DDR) pathway. However, the role of FOXM1 in poly (ADP-ribose) polymerase (PARP) inhibitor response has not yet been studied. The present study demonstrates that PARP inhibitor (PARPi), olaparib, induces the expression and nuclear localization of FOXM1. Based on ChIP-qPCR, olaparib enhances the binding of FOXM1 to genes involved in HR repair...
March 15, 2018: Molecular Cancer Research: MCR
Isabella Faraoni, Francesca Aloisio, Antonio De Gabrieli, Maria Irno Consalvo, Serena Lavorgna, Maria Teresa Voso, Francesco Lo-Coco, Grazia Graziani
Olaparib is a potent orally bioavailable poly(ADP-ribose) polymerase inhibitor (PARPi), approved for BRCA-mutated ovarian and breast cancers. We recently showed that olaparib at clinically achievable concentrations exerts anti-proliferative and pro-apoptotic effects in vitro as monotherapy against primary acute myeloid leukemia (AML) blasts, while sparing normal bone marrow (BM) hematopoietic cells. Since AML expresses low levels of death receptors that may contribute to apoptosis resistance, in this study we investigated whether the anti-leukemia activity of olaparib involves modulation of FAS and TRAIL receptors DR5 and DR4...
March 8, 2018: Cancer Letters
Gloria Mittica, Eleonora Ghisoni, Gaia Giannone, Sofia Genta, Massimo Aglietta, Anna Sapino, Giorgio Valabrega
BACKGROUND: Treatment of Epithelial Ovarian Cancer (EOC), historically based on surgery and platinum doublet chemotherapy, is associated with high risk of relapse and poor prognosis for recurrent disease. In this landscape, the innovative treatment with PARP inhibitors (PARPis) demonstrated an outstanding activity in EOC, and is currently changing clinical practice in BRCA mutant patients. OBJECTIVES: To highlight the mechanism of action, pharmacokinetics, clinical activity, indications and current strategies of development of Olaparib, Niraparib, Rucaparib, Talazoparib and Veliparib, the 5 most relevant PARPis...
March 5, 2018: Recent Patents on Anti-cancer Drug Discovery
Dong Hoon Suh, Miseon Kim, Kyung Hun Lee, Keun Yong Eom, Maj Kamille Kjeldsen, Mansoor Raza Mirza, Jae Weon Kim
In 2017, 10 topics were selected as major clinical research advances in gynecologic oncology. For cervical cancer, efficacy and safety analysis results of a 9-valent human papillomavirus (HPV) vaccine and long-term impact of reduced dose of quadrivalent vaccine were updated. Brief introduction of KEYNOTE trials of pembrolizumab, a monoclonal antibody that blocks the interaction between programmed death (PD)-1 and its ligands, PD-L1 and PD-L2, followed. Tailored surveillance programs for gynecologic cancer related with Lynch syndrome and update on sentinel lymph node mapping were reviewed for uterine corpus cancer...
March 2018: Journal of Gynecologic Oncology
Ailing Zhong, Hongqin Zhang, Suhong Xie, Minjie Deng, Hui Zheng, Yanchun Wang, Miaomiao Chen, Renquan Lu, Lin Guo
Dysfunction of the DNA repair pathway contributes to tumorigenesis and drug resistance. Methyl methanesulfonate and ultraviolet sensitive gene clone 81 (MUS81), a key endonuclease in DNA repair, is generally considered a tumor suppressor; however, recent studies have revealed its tumor-promoting effect in epithelial ovarian cancer (EOC) and have shown that its overexpression is associated with cisplatin sensitization. However, the exact functional role of MUS81 and its regulation in relation to chemotherapy sensitivity remains unknown...
January 22, 2018: Oncology Reports
Ethan Brill, Takuhei Yokoyama, Jayakumar Nair, Minshu Yu, Yeong-Ran Ahn, Jung-Min Lee
PARP inhibitors (PARPi) have been effective in high-grade serous ovarian cancer (HGSOC), although clinical activity is limited against BRCA wild type HGSOC. The nearly universal loss of normal p53 regulation in HGSOCs causes dysfunction in the G1/S checkpoint, making tumor cells reliant on Chk1-mediated G2/M cell cycle arrest for DNA repair. Therefore, Chk1 is a reasonable target for a combination strategy with PARPi in treating BRCA wild type HGSOC. Here we investigated the combination of prexasertib mesylate monohydrate (LY2606368), a Chk1 and Chk2 inhibitor, and a PARP inhibitor, olaparib, in HGSOC cell lines (OVCAR3, OV90, PEO1 and PEO4) using clinically attainable concentrations...
December 19, 2017: Oncotarget
Yuanli Zhen, Yonghao Yu
Poly-ADP-ribosylation (PARylation) is a protein posttranslational modification (PTM) that is critically involved in many biological processes that are linked to cell stress responses. It is catalyzed by a class of enzymes known as poly-ADP-ribose polymerases (PARPs). In particular, PARP1 is a nuclear protein that is activated upon sensing nicked DNA. Once activated, PARP1 is responsible for the synthesis of a large number of PARylated proteins and initiation of the DNA damage response (DDR) mechanisms. This observation provided the rationale for developing PARP1 inhibitors for the treatment of human malignancies...
January 12, 2018: Biochemistry
Sina Eetezadi, James C Evans, Yen Ting Shen, Raquel De Souza, Micheline Piquette-Miller, Christine Allen
Ovarian cancer is the fourth leading cause of death in women in developed countries. Even though patients with the most lethal form of the disease (HGSOC; high grade serous ovarian cancer) respond well to initial treatment, they often relapse with progressively resistant disease. Inhibitors of the poly(ADP-ribose) polymerase (PARP) enzymes are a relatively new class of molecularly targeted small molecule drugs that show promise in overcoming resistance. The present study explores the combination of a DNA damaging agent, doxorubicin (DOX), with the PARP inhibitor, olaparib (OLP) in order to achieve optimal synergy of both drugs in serous ovarian cancer...
December 28, 2017: Molecular Pharmaceutics
Sergey Karakashev, Hengrui Zhu, Yuhki Yokoyama, Bo Zhao, Nail Fatkhutdinov, Andrew V Kossenkov, Andrew J Wilson, Fiona Simpkins, David Speicher, Dineo Khabele, Benjamin G Bitler, Rugang Zhang
PARP inhibition is known to be an effective clinical strategy in BRCA mutant cancers, but PARP inhibition has not been applied to BRCA-proficient tumors. Here, we show the synergy of BET bromodomain inhibition with PARP inhibition in BRCA-proficient ovarian cancers due to mitotic catastrophe. Treatment of BRCA-proficient ovarian cancer cells with the BET inhibitor JQ1 downregulated the G2-M cell-cycle checkpoint regulator WEE1 and the DNA-damage response factor TOPBP1. Combining PARP inhibitor Olaparib with the BET inhibitor, we observed a synergistic increase in DNA damage and checkpoint defects, which allowed cells to enter mitosis despite the accumulation of DNA damage, ultimately causing mitotic catastrophe...
December 19, 2017: Cell Reports
Kelly E McCann
PURPOSE OF REVIEW: The recent United States Food and Drug Administration approvals of niraparib and olaparib as maintenance monotherapy for platinum-sensitive, high-grade ovarian cancers independent of BRCA status reflect a willingness to seek indications for poly-ADP-ribose polymerase (PARP) inhibitors beyond cancers with deleterious breast cancer 1 and breast cancer 2 mutations. In this review, I describe the rationale behind current PARP combination clinical trials with chemotherapies, angiogenesis inhibitors, cell cycle checkpoint inhibitors, and inhibitors of the phosphoinositide 3-kinase/AK thymoma/mechanistic target of rapamycin pathway...
February 2018: Current Opinion in Obstetrics & Gynecology
Ettore Capoluongo, Gillian Ellison, José Antonio López-Guerrero, Frederique Penault-Llorca, Marjolijn J L Ligtenberg, Susana Banerjee, Christian Singer, Eitan Friedman, Birgid Markiefka, Peter Schirmacher, Reinhard Büttner, Christi J van Asperen, Isabelle Ray-Coquard, Volker Endris, Suzanne Kamel-Reid, Natalie Percival, Jane Bryce, Benno Röthlisberger, Richie Soong, David Gonzalez de Castro
The approval, in 2015, of the first poly (adenosine diphosphate-ribose) polymerase inhibitor (PARPi; olaparib, Lynparza) for platinum-sensitive relapsed high-grade ovarian cancer with either germline or somatic BRCA1/2 deleterious mutations is changing the way that BRCA1/2 testing services are offered to patients with ovarian cancer. Ovarian cancer patients are now being referred for BRCA1/2 genetic testing for treatment decisions, in addition to familial risk estimation, and irrespective of a family history of breast or ovarian cancer...
June 2017: Seminars in Oncology
S Pignata, S C Cecere, A Du Bois, P Harter, F Heitz
Despite optimal surgery and appropriate first-line chemotherapy, ∼70%-80% of patients with epithelial ovarian cancer will develop disease relapse. The same modalities as used primarily are available for treatment of recurrent ovarian cancer (ROC). The rationale for repetitive surgery in ROC was based on a stable body of retrospective data; however, prospective data were missing. Now, preliminary data from the prospective AGO-DESKTOP III give evidence that surgery for ROC seems to be of benefit for selected patients with platinum-sensitive relapse undergoing complete resection...
November 1, 2017: Annals of Oncology: Official Journal of the European Society for Medical Oncology
Mekonnen Sisay, Dumessa Edessa
Poly (ADP-ribose) polymerases (PARPs) are an important family of nucleoproteins highly implicated in DNA damage repair. Among the PARP families, the most studied are PARP1, PARP2 and PARP 3. PARP1 is found to be the most abundant nuclear enzyme under the PARP series. These enzymes are primarily involved in base excision repair as one of the major single strand break (SSB) repair mechanisms. Being double stranded, DNA engages itself in reparation of a sub-lethal SSB with the aid of PARP. Moreover, by having a sister chromatid, DNA can also repair double strand breaks with either error-free homologous recombination or error-prone non-homologous end-joining...
2017: Gynecologic Oncology Research and Practice
Emma C Bourton, Pia-Amata Ahorner, Piers N Plowman, Sheba Adam Zahir, Hussein Al-Ali, Christopher N Parris
The use of polyADPribose polymerase inhibitors in cancer treatment provides a unique opportunity to target DNA repair processes in cancer cells while leaving normal tissue intact. The PARP-1 enzyme repairs DNA single strand breaks (SSB). Therefore PARP-1 inhibition in BRCA1 negative cancers results in the formation of cytotoxic DNA double strand breaks (DSB) causing synthetic lethality. The use of PARP1 inhibitors is gaining momentum in the treatment of a variety of tumours with BRCA1 involvement including breast, ovarian, pancreatic and prostate cancer...
2017: Journal of Cancer
Akihiro Ohmoto, Shinichi Yachida
Inhibitors of poly(ADP-ribose) polymerases (PARPs), which play a key role in DNA damage/repair pathways, have been developed as antitumor agents based on the concept of synthetic lethality. Synthetic lethality is the idea that cell death would be efficiently induced by simultaneous loss of function of plural key molecules, for example, by exposing tumor cells with inactivating gene mutation of BRCA-mediated DNA repair to chemically induced inhibition of PARPs. Indeed, three PARP inhibitors, olaparib, rucaparib and niraparib have already been approved in the US or Europe, mainly for the treatment of BRCA -mutant ovarian cancer...
2017: OncoTargets and Therapy
Aurélie Auguste, Alexandra Leary
The demonstration of frequent defects in the DNA damage response in high grade ovarian cancer has paved the way for a new therapeutic approach aimed at exploiting this unique vulnerability. The efficacy of poly (ADP) ribose polymerase inhibitors (PARPi) in patients with homologous recombination (HR) DNA repair deficient ovarian cancer (OC) resulting from a BRCA1/2 mutation has provided the proof of concept for synthetic lethality. Thus, olaparib is now approved by the EMA as maintenance therapy after response to a platinum regimen for patients with recurrent, platinum-sensitive, high-grade serous, BRCA1/2-mutated ovarian cancer...
November 2017: Bulletin du Cancer
Lauren E Dockery, William P Tew, Kai Ding, Kathleen N Moore
OBJECTIVES: The objective of this study was to determine the overall tolerability and toxicity of olaparib capsules among older (≥65years) patients with recurrent ovarian cancer treated on 8 completed prospective trials of olaparib. METHODS: An ancillary data analysis of 398 patients with recurrent ovarian cancer enrolled on eight prospective trials of olaparib capsules was performed. Patients aged 65years and older were stratified into age groups by 5year increments (ages 65-69, 70-74, ≥75years) and compared to those <65...
December 2017: Gynecologic Oncology
Christine Walsh
INTRODUCTION: PARP (poly(ADP-ribose) polymerase) inhibitors are a targeted therapy option for ovarian cancer. The goal of this review was to organize and summarize the clinical trials evaluating PARP inhibitor therapy in ovarian cancer as monotherapy, maintenance therapy after partial or complete remission to therapy or as a part of a combination regimen. EVIDENCE ACQUISITION: PubMed,, data from the United States Food and Drug Administration (US FDA) and proceedings from scientific conferences were searched for published and unpublished data pertaining to clinical trials and approvals of PARP inhibitor use in ovarian cancer...
October 9, 2017: Minerva Ginecologica
Javier Gayarre, Paloma Martín-Gimeno, Ana Osorio, Beatriz Paumard, Alicia Barroso, Victoria Fernández, Miguel de la Hoya, Alejandro Rojo, Trinidad Caldés, José Palacios, Miguel Urioste, Javier Benítez, María J García
BACKGROUND: Despite a high prevalence of deleterious missense variants, most studies of RAD51C ovarian cancer susceptibility gene only provide in silico pathogenicity predictions of missense changes. We identified a novel deleterious RAD51C missense variant (p.Arg312Trp) in a high-risk family, and propose a criteria to prioritise RAD51C missense changes qualifying for functional analysis. METHODS: To evaluate pathogenicity of p.Arg312Trp variant we used sequence homology, loss of heterozygosity (LOH) and segregation analysis, and a comprehensive functional characterisation...
September 26, 2017: British Journal of Cancer
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"