Read by QxMD icon Read


Eric A Hill, William B Chrisler, Alex S Beliaev, Hans C Bernstein
A new co-cultivation technology is presented that converts greenhouse gasses, CH4 and CO2, into microbial biomass. The methanotrophic bacterium, Methylomicrobium alcaliphilum 20z, was coupled to a cyanobacterium, Synechococcus PCC 7002 via oxygenic photosynthesis. The system exhibited robust growth on diverse gas mixtures ranging from biogas to those representative of a natural gas feedstock. A continuous processes was developed on a synthetic natural gas feed that achieved steady-state by imposing coupled light and O2 limitations on the cyanobacterium and methanotroph, respectively...
January 3, 2017: Bioresource Technology
Spencer Diamond, Benjamin E Rubin, Ryan K Shultzaberger, You Chen, Chase D Barber, Susan S Golden
Cyanobacteria evolved a robust circadian clock, which has a profound influence on fitness and metabolism under daily light-dark (LD) cycles. In the model cyanobacterium Synechococcus elongatus PCC 7942, a functional clock is not required for diurnal growth, but mutants defective for the response regulator that mediates transcriptional rhythms in the wild-type, regulator of phycobilisome association A (RpaA), cannot be cultured under LD conditions. We found that rpaA-null mutants are inviable after several hours in the dark and compared the metabolomes of wild-type and rpaA-null strains to identify the source of lethality...
January 10, 2017: Proceedings of the National Academy of Sciences of the United States of America
Apostolos-Manuel Koussoroplis, Anke Schwarzenberger, Alexander Wacker
We studied the short- (12 hours) and long-term (144h) response of Daphnia pulex lipases to quality shifts in diets consisting of different mixtures of the green alga Scenedesmus with the cyanobacterium Synechococcus, two species with contrasting lipid compositions. The lipase/esterase activity in both the gut and the body tissues responded fast to the diet shift and increased with higher dietary contributions of Synechococcus When screening the Daphnia genome for TAG lipases, we discovered a large gene-family expansion of these enzymes...
January 9, 2017: Biology Open
Richard Baran, Rebecca Lau, Benjamin P Bowen, Spencer Diamond, Nick Jose, Ferran Garcia-Pichel, Trent R Northen
Cyanobacteria are important primary producers of organic matter in diverse environments on a global scale. While mechanisms of CO2 fixation are well understood, the distribution of the flow of fixed organic carbon within individual cells and complex microbial communities is less well characterized. To obtain a general overview of metabolism, we describe the use of deuterium oxide (D2O) to measure deuterium incorporation into the intracellular metabolites of two physiologically diverse cyanobacteria: a terrestrial filamentous strain (Microcoleus vaginatus PCC 9802) and a euryhaline unicellular strain (Synechococcus sp...
January 9, 2017: ACS Chemical Biology
Malavika Sinha, István Weyda, Annette Sørensen, Kenneth S Bruno, Birgitte K Ahring
In this study we describe the heterologous expression of the recently identified cyanobacterial pathway for long chain alkane biosynthesis, involving the reduction of fatty acyl-ACP to fatty aldehyde and the subsequent conversion of this into alkanes, in the filamentous fungus Aspergillus carbonarius ITEM 5010. Genes originating from Synechococcus elongatus strain PCC7942, encoding acyl-ACP/CoA reductase and aldehyde deformylating oxygenase enzymes, were successfully expressed in A. carbonarius, which lead to the production of pentadecane and heptadecane, alkanes that have not been previously produced by this fungus...
December 2017: AMB Express
Olaa Motwalli, Magbubah Essack, Boris R Jankovic, Boyang Ji, Xinyao Liu, Hifzur Rahman Ansari, Robert Hoehndorf, Xin Gao, Stefan T Arold, Katsuhiko Mineta, John A C Archer, Takashi Gojobori, Ivan Mijakovic, Vladimir B Bajic
BACKGROUND: Finding a source from which high-energy-density biofuels can be derived at an industrial scale has become an urgent challenge for renewable energy production. Some microorganisms can produce free fatty acids (FFA) as precursors towards such high-energy-density biofuels. In particular, photosynthetic cyanobacteria are capable of directly converting carbon dioxide into FFA. However, current engineered strains need several rounds of engineering to reach the level of production of FFA to be commercially viable; thus new chassis strains that require less engineering are needed...
January 5, 2017: BMC Genomics
Markus V Lindh, Johanna Sjöstedt, Börje Ekstam, Michele Casini, Daniel Lundin, Luisa W Hugerth, Yue O O Hu, Anders F Andersson, Agneta Andersson, Catherine Legrand, Jarone Pinhassi
Metapopulation theory developed in terrestrial ecology provides applicable frameworks for interpreting the role of local and regional processes in shaping species distribution patterns. Yet, empirical testing of metapopulation models on microbial communities is essentially lacking. We determined regional bacterioplankton dynamics from monthly transect sampling in the Baltic Sea Proper using 16S rRNA gene sequencing. A strong positive trend was found between local relative abundance and occupancy of populations...
December 28, 2016: Environmental Microbiology
Michelle A Berry, Timothy W Davis, Rose M Cory, Melissa B Duhaime, Thomas H Johengen, George W Kling, John A Marino, Paul A Den Uyl, Duane Gossiaux, Gregory J Dick, Vincent J Denef
Human activities are causing a global proliferation of cyanobacterial harmful algal blooms (CHABs), yet we have limited understanding of how these events affect freshwater bacterial communities. Using weekly data from western Lake Erie in 2014, we investigated how the cyanobacterial community varied over space and time, and whether the bloom affected non-cyanobacterial (nc-bacterial) diversity and composition. Cyanobacterial community composition fluctuated dynamically during the bloom, but was dominated by Microcystis and Synechococcus OTUs...
December 27, 2016: Environmental Microbiology
Shuyi Zhang, Xiao Qian, Shannon Chang, G C Dismukes, Donald A Bryant
For nearly half a century, it was believed that cyanobacteria had an incomplete tricarboxylic acid (TCA) cycle, because 2-oxoglutarate dehydrogenase (2-OGDH) was missing. Recently, a bypass route via succinic semialdehyde (SSA), which utilizes 2-oxoglutarate decarboxylase (OgdA) and succinic semialdehyde dehydrogenase (SsaD) to convert 2-oxoglutarate (2-OG) into succinate, was identified, thus completing the TCA cycle in most cyanobacteria. In addition to the recently characterized glyoxylate shunt that occurs in a few of cyanobacteria, the existence of a third variant of the TCA cycle connecting these metabolites, the γ-aminobutyric acid (GABA) shunt, was considered to be ambiguous because the GABA aminotransferase is missing in many cyanobacteria...
2016: Frontiers in Microbiology
Xiao Qian, Min Kyung Kim, G Kenchappa Kumaraswamy, Ananya Agarwal, Desmond S Lun, G Charles Dismukes
We have constructed and experimentally tested a comprehensive genome-scale model of photoautotrophic growth, denoted iSyp821, for the cyanobacterium Synechococcus sp. PCC 7002. iSyp821 incorporates a variable biomass objective function (vBOF), in which stoichiometries of the major biomass components vary according to light intensity. The vBOF was constrained to fit the measured cellular carbohydrate/protein content under different light intensities. iSyp821 provides rigorous agreement with experimentally measured cell growth rates and inorganic carbon uptake rates as a function of light intensity...
December 21, 2016: Biochimica et Biophysica Acta
Marius Kaucikas, Karim Maghlaoui, Jim Barber, Thomas Renger, Jasper J van Thor
In oxygenic photosynthesis, two photosystems work in series. Each of them contains a reaction centre that is surrounded by light-harvesting antennae, which absorb the light and transfer the excitation energy to the reaction centre where electron transfer reactions are driven. Here we report a critical test for two contrasting models of light harvesting by photosystem II cores, known as the trap-limited and the transfer-to-the trap-limited model. Oriented single crystals of photosystem II core complexes of Synechococcus elongatus are excited by polarized visible light and the transient absorption is probed with polarized light in the infrared...
December 23, 2016: Nature Communications
Bruno Mc Martins, Arijit K Das, Liliana Antunes, James Cw Locke
Organisms use circadian clocks to generate 24-h rhythms in gene expression. However, the clock can interact with other pathways to generate shorter period oscillations. It remains unclear how these different frequencies are generated. Here, we examine this problem by studying the coupling of the clock to the alternative sigma factor sigC in the cyanobacterium Synechococcus elongatus Using single-cell microscopy, we find that psbAI, a key photosynthesis gene regulated by both sigC and the clock, is activated with two peaks of gene expression every circadian cycle under constant low light...
December 22, 2016: Molecular Systems Biology
Justin Ungerer, Himadri B Pakrasi
Cyanobacteria are the ideal organisms for the production of a wide range of bioproducts as they can convert CO2 directly into the desired end product using solar energy. Unfortunately, the engineering of cyanobacteria to create efficient cell factories has been impaired by the cumbersome genetic tools that are currently available for these organisms; especially when trying to accumulate multiple modifications. We sought to construct an efficient and precise tool for generating numerous markerless modifications in cyanobacteria using CRISPR technology and the alternative nuclease, Cpf1...
December 21, 2016: Scientific Reports
Yasutaka Hirokawa, Yuki Maki, Taizo Hanai
The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and Klebsiella pneumoniae. This pathway enabled 1,3-propanediol (1,3-PDO) production from cellular DHAP via glycerol in the cyanobacterium, Synechococcus elongatus PCC 7942. The production of 1,3-PDO (3...
January 2017: Metabolic Engineering
Ethan I Lan, Crystal T Wei
Succinate is an important commodity chemical currently used in the food, pharmaceutical, and polymer industries. It can also be chemically converted into other major industrial chemicals such as 1,4-butanediol, butadiene, and tetrahydrofuran. Here we metabolically engineered a model cyanobacterium Synechococcus elongatus PCC 7942 to photosynthetically produce succinate. We expressed the genes encoding for α-ketoglutarate decarboxylase and succinate semialdehyde dehydrogenase in S. elongatus PCC 7942, resulting in a strain capable of producing 120mg/L of succinate...
October 27, 2016: Metabolic Engineering
Deana Pedersen, Scott R Miller
We take an in vivo fluorescence approach to investigate photosynthetic adaptation by ecologically divergent members of the A/B clade of the hot spring cyanobacterium Synechococcus, the most thermotolerant of which defines the upper thermal limit for photosynthesis. During Synechococcus diversification, both photosystem II and the light-harvesting phycobilisome have evolved greater thermostability as the group has invaded higher temperature habitats, particularly for the most thermotolerant lineage. This enhanced function at higher temperatures has come at the cost of reduced performance at lower temperatures, and these trade-offs contribute to niche specialization in the clade...
December 16, 2016: ISME Journal
Zuoxi Ruan, Mario Giordano
The assimilation of N-NO3(-) requires more energy than that of N-NH4(+) . This becomes relevant when energy is limiting and may impinge differently on cell energy budget depending on depth, time of the day and season. We hypothesize that N-limited and energy-limited cells of the oceanic cyanobacterium Synechococcus sp. differ in their response to the N source with respect to growth, elemental stoichiometry and carbon allocation. Under N limitation, cells retained almost absolute homeostasis of elemental and organic composition, and the use of NH4(+) did not stimulate growth...
November 5, 2016: Plant, Cell & Environment
Matthew J Smith, Matthew B Francis
Microbial cocultures promise the development of more efficient bioproductions. However, the design of obligate mutualisms is complicated when using organisms that possess differing growth rates or incompatible media requirements. In this work, we investigate sucrose production by cscB Synechococcus elongatus PCC 7942 within a polyacrylate hydrogel matrix. This system secretes sucrose only when the hydrogel is spatially constrained, demonstrating a new utilization of hydrogel swelling pressure to control the osmotic strength of a microbial microenvironment...
December 12, 2016: Biotechnology and Bioengineering
Yantao Liang, Yongyu Zhang, Yao Zhang, Tingwei Luo, Richard B Rivkin, Nianzhi Jiao
Virio- and picoplankton mediate important biogeochemical processes and the environmental factors that regulate their dynamics, and the virus-host interactions are incompletely known, especially in the deep sea. Here we report on their distributions and relationships with environmental factors at 21 stations covering a latitudinal range (2-23° N) in the Western Pacific Ocean. This region is characterized by a complex western boundary current system. Synechococcus, autotrophic picoeukaryotes, heterotrophic prokaryotes and virus-like particles (VLPs) were high (<2...
February 2017: FEMS Microbiology Ecology
Jared T Broddrick, Benjamin E Rubin, David G Welkie, Niu Du, Nathan Mih, Spencer Diamond, Jenny J Lee, Susan S Golden, Bernhard O Palsson
The model cyanobacterium, Synechococcus elongatus PCC 7942, is a genetically tractable obligate phototroph that is being developed for the bioproduction of high-value chemicals. Genome-scale models (GEMs) have been successfully used to assess and engineer cellular metabolism; however, GEMs of phototrophic metabolism have been limited by the lack of experimental datasets for model validation and the challenges of incorporating photon uptake. Here, we develop a GEM of metabolism in S. elongatus using random barcode transposon site sequencing (RB-TnSeq) essential gene and physiological data specific to photoautotrophic metabolism...
December 20, 2016: Proceedings of the National Academy of Sciences of the United States of America
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"