Read by QxMD icon Read

Epigenetic Regulation

Anna Chung-Kwan Tse, Jing-Woei Li, Simon Yuan Wang, Ting-Fung Chan, Keng Po Lai, Rudolf Shiu-Sun Wu
Hypoxia is a global environmental concern and poses a significant threat to aquatic ecosystems, including the sustainability of natural fish populations. The deleterious effects of hypoxia on fish reproductive fitness, as mediated by disruption of sex hormones and gene expression along the Brain-Pituitary-Gonad axis, have been well documented. Recently, we further demonstrated that the observed disruption of steroidogenesis in the ovary of marine medaka Oryzias melastigma is mediated through microRNAs (miRNAs)...
October 8, 2016: Aquatic Toxicology
Aindrila Chatterjee, Janine Seyfferth, Jacopo Lucci, Ralf Gilsbach, Sebastian Preissl, Lena Böttinger, Christoph U Mårtensson, Amol Panhale, Thomas Stehle, Oliver Kretz, Abdullah H Sahyoun, Sergiy Avilov, Stefan Eimer, Lutz Hein, Nikolaus Pfanner, Thomas Becker, Asifa Akhtar
A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF...
October 20, 2016: Cell
Gianluigi Franci, Federica Sarno, Angela Nebbioso, Lucia Altucci
Epigenetic modifications are functionally involved in gene expression regulation. In particular, histone posttranslational modifications play a crucial role in functional chromatin organization. Several drugs able to inhibit or stimulate some families of proteins involved in epigenetic histone regulation have been found, a number of which are FDA-approved for the treatment of cutaneous T-cell lymphoma or are in phase I/II/III clinical trials for solid tumors. Although some protein families, such as histone deacetylases and their inhibitors, are well characterized, our understanding of histone lysine demethylases is still incomplete...
October 21, 2016: Epigenetics: Official Journal of the DNA Methylation Society
Denise Laskowski, Ylva Sjunnesson, Hans Gustafsson, Patrice Humblot, Göran Andersson, Renée Båge
BACKGROUND: Insulin has been used as a stimulatory factor for in vitro cell culture since many years. Even for routine in vitro embryo production (IVP), insulin is added to the media during different steps. There is a strong difference in concentrations used in vitro compared to what is measured in vivo in follicular fluid or serum. We performed a pilot study on insulin stability to explain possible reasons for that variation. RESULTS: We measured insulin concentrations before and after bovine oocyte maturation in an experiment by using a quantitative ELISA (Mercodia bovine insulin ELISA immunoassay) and found that concentrations were stable up to 22 h of incubation...
October 20, 2016: Acta Veterinaria Scandinavica
Qiang Fu, Huijun Shi, Chuangfu Chen
MicroRNAs (miRNAs) are an important class of small, non-coding RNAs that control target genes expression by degradation of target mRNAs or by inhibiting protein translation in many biological processes and cellular pathways. In a previous study, we found that miR-29b interfered with bovine viral diarrhea virus (BVDV) replication. However, the mechanisms of regulation of miR-29b expression are not well known. DNA methylation is an important epigenetic mechanism for silencing gene transcription, and plays an important role in promoter choice, protein expression, and regulation of miRNAs expression...
October 20, 2016: Archives of Virology
Yong Zhang, Bing Yu, Jun He, Daiwen Chen
Skeletal muscle is a remarkably complicated organ comprising many different cell types, and it plays an important role in lifelong metabolic health. Nutrients, as an external regulator, potently regulate skeletal muscle development through various internal regulatory factors, such as mammalian target of rapamycin (mTOR) and microRNAs (miRNAs). As a nutrient sensor, mTOR, integrates nutrient availability to regulate myogenesis and directly or indirectly influences microRNA expression. MiRNAs, a class of small non-coding RNAs mediating gene silencing, are implicated in myogenesis and muscle-related diseases...
2016: International Journal of Biological Sciences
Jing Chen, Xiaoyan Zhang, Han Zhang, Tongqiang Liu, Hui Zhang, Jie Teng, Jun Ji, Xiaoqiang Ding
Chronic kidney disease (CKD) is a state of Klotho deficiency. The Klotho expression may be suppressed due to DNA hypermethylation in cancer cells so we have investigated the effects and possible mechanisms by which Klotho expression is regulated in human aortic smooth muscle cells (HASMCs). The vascular Klotho hypermethylation in radial arteries of patients with end-stage renal disease was described. Cultured HASMCs and 5/6-nephrectomized Sprague Dawley (SD) rats treated with indoxyl sulfate (IS) were used as in vitro and in vivo models, respectively...
2016: International Journal of Biological Sciences
Yan Long, Wen-Bin Tsai, Jeffrey T Chang, Marcos Estecio, Medhi Wangpaichitr, Naramol Savaraj, Lynn G Feun, Helen H W Chen, Macus Tien Kuo
Many human tumors require extracellular arginine (Arg) for growth because the key enzyme for de novo biosynthesis of Arg, argininosuccinate synthetase 1 (ASS1), is silenced. These tumors are sensitive to Arg-starvation therapy using pegylated arginine deiminase (ADI-PEG20) which digests extracellular Arg. Many previous studies reported that ASS1 silencing is due to epigenetic inactivation of ASS1 expression by DNA methylation, and that the demethylation agent 5-aza-deoxycytidine (Aza-dC) can induce ASS1 expression...
September 28, 2016: Oncotarget
Linda Witek Janusek, Dina Tell, Noni Gaylord-Harden, Herbert L Mathews
African American men (AAM) who are exposed to trauma and adversity during their early life are at greater risk for poor health over their lifespan. Exposure to adversity during critical developmental windows may embed an epigenetic signature that alters expression of genes that regulate stress response systems, including those genes that regulate the inflammatory response to stress. Such an epigenetic signature may increase risk for diseases exacerbated by inflammation, and may contribute to health disparity...
October 17, 2016: Brain, Behavior, and Immunity
J Z Zhao, X Q Zheng, M Gao
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase that functions as a tumor suppressor. PTEN regulates the multiple biological processes such as cell proliferation, invasion, metastasis, apoptosis and stem cell self-renewal through the phosphatidylinositol 3-kinase/ protein kinase B signaling pathway. PTEN activity can be modulated by mutations, epigenetic silencing, transcriptional repression, post-transcriptional contral and post-translational modifications.
October 7, 2016: Zhonghua Er Bi Yan Hou Tou Jing Wai Ke za Zhi, Chinese Journal of Otorhinolaryngology Head and Neck Surgery
Tushar Tomar, Steven de Jong, Nicolette G Alkema, Rieks L Hoekman, Gert Jan Meersma, Harry G Klip, Ate Gj van der Zee, G Bea A Wisman
BACKGROUND: In high-grade serous ovarian cancer (HGSOC), intrinsic and/or acquired resistance against platinum-containing chemotherapy is a major obstacle for successful treatment. A low frequency of somatic mutations but frequent epigenetic alterations, including DNA methylation in HGSOC tumors, presents the cancer epigenome as a relevant target for innovative therapy. Patient-derived xenografts (PDXs) supposedly are good preclinical models for identifying novel drug targets. However, the representativeness of global methylation status of HGSOC PDXs compared to their original tumors has not been evaluated so far...
October 20, 2016: Genome Medicine
Francesca Megiorni, Simona Camero, Simona Ceccarelli, Heather P McDowell, Olga Mannarino, Francesco Marampon, Barry Pizer, Rajeev Shukla, Antonio Pizzuti, Cinzia Marchese, Anna Clerico, Carlo Dominici
Aberrant DNA methylation has been frequently observed in many human cancers, including rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children. To date, the expression and function of the de novo DNA methyltransferase (DNMT) 3B in RMS have not yet been investigated. Our study show for the first time a significant up-regulation of DNMT3B levels in 14 RMS tumour samples and 4 RMS cell lines in comparison to normal skeletal muscle. Transfection of RD and TE671 cells, two in vitro models of embryonal RMS (ERMS), with a synthetic DNMT3B siRNA decreased cell proliferation by arresting cell cycle at G1 phase, as demonstrated by the reduced expression of Cyclin B1, Cyclin D1 and Cyclin E2, and by the concomitant up-regulation of the checkpoint regulators p21 and p27...
October 15, 2016: Oncotarget
Rui Su, Jia-Nan Gong, Ming-Tai Chen, Li Song, Chao Shen, Xin-Hua Zhang, Xiao-Lin Yin, Hong-Mei Ning, Bing Liu, Fang Wang, Yan-Ni Ma, Hua-Lu Zhao, Jia Yu, Jun-Wu Zhang
Aberrant activation of c-Myc plays an important oncogenic role via regulating a series of coding and non-coding genes in acute myeloid leukemia (AML). Histone deacetylases (HDACs) can remove acetyl group from histone and regulate gene expression via changing chromatin structure. Here, we found miR-451 is abnormally down-regulated in AML patient samples; c-Myc recruits HDAC3 to form a transcriptional suppressor complex, co-localizes on the miR-451 promoter, epigenetically inhibits its transcription and finally induces its downregulation in AML...
October 15, 2016: Oncotarget
Jia Nan, Wang Jieyu, Li Qing, Tao Xiang, Chang Kaikai, Hua Keqin, Yu Yinhua, Wong Kwong-Kwok, Feng Weiwei
This work investigated the role of paired box 2 (PAX2) in endometrial cancer and its epigenetic regulation mechanism. Endometrial cancer tissues and cell lines exhibited increased PAX2 expression compared with hyperplasia, normal endometrium and endometrial epithelial cells. Knock-down of PAX2 resulted in reduced cell viability, invasion and migration, and PAX2 overexpression caused the opposite effects. Increased methylation of the PAX2 promoter was observed in both cancer tissues and cell lines and was positively correlated with PAX2 expression...
October 13, 2016: Oncotarget
Ke Ren, Wei Zhang, Xiaoqing Chen, Yingyu Ma, Yue Dai, Yimei Fan, Yayi Hou, Ren Xiang Tan, Erguang Li
The human HSV-1 and -2 are common pathogens of human diseases. Both host and viral factors are involved in HSV lytic infection, although detailed mechanisms remain elusive. By screening a chemical library of epigenetic regulation, we identified bromodomain-containing protein 4 (BRD4) as a critical player in HSV infection. We show that treatment with pan BD domain inhibitor enhanced both HSV infection. Using JQ1 as a probe, we found that JQ1, a defined BD1 inhibitor, acts through BRD4 protein since knockdown of BRD4 expression ablated JQ1 effect on HSV infection...
October 2016: PLoS Pathogens
Adil El Taghdouini, Leo A van Grunsven
Chronic liver injury to hepatocytes or cholangiocytes, when left unmanaged, leads to the development of liver fibrosis, a condition characterized by the excessive intrahepatic deposition of extracellular matrix proteins. Activated hepatic stellate cells constitute the predominant source of extracellular matrix in fibrotic livers and their transition from a quiescent state during fibrogenesis is associated with important alterations in their transcriptional and epigenetic landscape. Areas covered: We briefly describe the processes involved in hepatic stellate cell activation and discuss our current understanding of alterations in the epigenetic landscape, i...
October 20, 2016: Expert Review of Gastroenterology & Hepatology
Angad P Mehta, Han Li, Sean A Reed, Lubica Supekova, Tsotne Javahishvili, Peter G Schultz
Several modified bases have been observed in the genomic DNA of bacteriophages, prokaryotes, and eukaryotes that play a role in restriction systems and/or epigenetic regulation. In our efforts to understand the consequences of replacing a large fraction of a canonical nucleoside with a modified nucleoside, we previously replaced around 75% of thymidine (T) with 5'-hydroxymethyl-2'-deoxyuridine (5hmU) in the Escherichia coli genome. In this study, we engineered the pyrimidine nucleotide biosynthetic pathway using T4 bacteriophage genes to achieve approximately 63% replacement of 2'-deoxycytidine (dC) with 5-hydroxymethyl-2'-deoxycytidine (5hmC) in the E...
October 20, 2016: Journal of the American Chemical Society
Mathieu Fonteneau, Dominique Filliol, Patrick Anglard, Katia Befort, Pascal Romieu, Jean Zwiller
DNA methylation is a major epigenetic process which regulates the accessibility of genes to the transcriptional machinery. In the present study, we investigated whether modifying the global DNA methylation pattern in the brain would alter cocaine intake by rats, using the cocaine self-administration test. The data indicate that treatment of rats with the DNA methyltransferase inhibitors 5-aza-2'-deoxycytidine and zebularine actually enhanced the reinforcing properties of cocaine. To get some insights about the underlying neurobiological mechanisms, a genome-wide methylation analysis was undertaken in the prefrontal cortex of rats self-administering cocaine and treated or not with 5-aza-2'-deoxycytidine...
October 20, 2016: Genes, Brain, and Behavior
Laura Whitton, Donna Cosgrove, Christopher Clarkson, Denise Harold, Kimberley Kendall, Alex Richards, Kiran Mantripragada, Michael J Owen, Michael C O'Donovan, James Walters, Annette Hartmann, Betina Konte, Dan Rujescu, Michael Gill, Aiden Corvin, Stephen Rea, Gary Donohoe, Derek W Morris
Epigenetic mechanisms are an important heritable and dynamic means of regulating various genomic functions, including gene expression, to orchestrate brain development, adult neurogenesis, and synaptic plasticity. These processes when perturbed are thought to contribute to schizophrenia pathophysiology. A core feature of schizophrenia is cognitive dysfunction. For genetic disorders where cognitive impairment is more severe such as intellectual disability, there are a disproportionally high number of genes involved in the epigenetic regulation of gene transcription...
October 20, 2016: American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics
David Olagnier, Cindy Chiang, John Hiscott
The dynamics of chromatin structure contribute to the regulation of gene transcription and in part, the changes in chromatin structure associated with gene activation/repression are a function of the state of histone acetylation. Histone deacetylases (HDACs) deacetylate histone tails leading to a more compact structure of chromatin that in turn represses gene transcription. Given the rapid activation and/or repression of gene networks following microbial infection, the role of HDACs in the epigenetic regulation of genes involved in the innate and adaptive immune responses has become an area of extensive research...
2017: Methods in Molecular Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"