keyword
MENU ▼
Read by QxMD icon Read
search

"mushroom body"

keyword
https://www.readbyqxmd.com/read/28728024/origins-of-cell-type-specific-olfactory-processing-in-the-drosophila-mushroom-body-circuit
#1
Kengo Inada, Yoshiko Tsuchimoto, Hokto Kazama
How cell-type-specific physiological properties shape neuronal functions in a circuit remains poorly understood. We addressed this issue in the Drosophila mushroom body (MB), a higher olfactory circuit, where neurons belonging to distinct glomeruli in the antennal lobe feed excitation to three types of intrinsic neurons, α/β, α'/β', and γ Kenyon cells (KCs). Two-photon optogenetics and intracellular recording revealed that whereas glomerular inputs add similarly in all KCs, spikes were generated most readily in α'/β' KCs...
July 19, 2017: Neuron
https://www.readbyqxmd.com/read/28718765/a-connectome-of-a-learning-and-memory-center-in-the-adult-drosophila-brain
#2
Shin-Ya Takemura, Yoshinori Aso, Toshihide Hige, Allan Wong, Zhiyuan Lu, C Shan Xu, Patricia K Rivlin, Harald F Hess, Ting Zhao, Toufiq Parag, Stuart Berg, Gary Huang, William Katz, Donald J Olbris, Stephen Plaza, Lowell Umayam, Roxanne Aniceto, Lei-Ann Chang, Shirley Lauchie, Omotara Ogundeyi, Christopher Ordish, Aya Shinomiya, Christopher Sigmund, Satoko Takemura, Julie Tran, Glenn C Turner, Gerald M Rubin, Louis K Scheffer
Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB's α lobe, using a dataset of isotropic 8-nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment...
July 18, 2017: ELife
https://www.readbyqxmd.com/read/28685185/regeneration-of-synapses-in-the-olfactory-pathway-of-locusts-after-antennal-deafferentation
#3
Hannah Wasser, Michael Stern
The olfactory pathway of the locust is capable of fast and precise regeneration on an anatomical level. Following deafferentation of the antenna either of young adult locusts, or of fifth instar nymphs, severed olfactory receptor neurons (ORNs) reinnervate the antennal lobe (AL) and arborize in AL microglomeruli. In the present study we tested whether these regenerated fibers establish functional synapses again. Intracellular recordings from AL projection neurons revealed that the first few odor stimulus evoked postsynaptic responses from regenerated ORNs from day 4-7 post crush on...
July 6, 2017: Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology
https://www.readbyqxmd.com/read/28676744/trace-conditioning-in-drosophila-induces-associative-plasticity-in-mushroom-body-kenyon-cells-and-dopaminergic-neurons
#4
Kristina V Dylla, Georg Raiser, C Giovanni Galizia, Paul Szyszka
Dopaminergic neurons (DANs) signal punishment and reward during associative learning. In mammals, DANs show associative plasticity that correlates with the discrepancy between predicted and actual reinforcement (prediction error) during classical conditioning. Also in insects, such as Drosophila, DANs show associative plasticity that is, however, less understood. Here, we study associative plasticity in DANs and their synaptic partners, the Kenyon cells (KCs) in the mushroom bodies (MBs), while training Drosophila to associate an odorant with a temporally separated electric shock (trace conditioning)...
2017: Frontiers in Neural Circuits
https://www.readbyqxmd.com/read/28666437/olfactory-coding-from-the-periphery-to-higher-brain-centers-in-the-drosophila-brain
#5
Yoichi Seki, Hany K M Dweck, Jürgen Rybak, Dieter Wicher, Silke Sachse, Bill S Hansson
BACKGROUND: Odor information is processed through multiple receptor-glomerular channels in the first order olfactory center, the antennal lobe (AL), then reformatted into higher brain centers and eventually perceived by the fly. To reveal the logic of olfaction, it is fundamental to map odor representations from the glomerular channels into higher brain centers. RESULTS: We characterize odor response profiles of AL projection neurons (PNs) originating from 31 glomeruli using whole cell patch-clamp recordings in Drosophila melanogaster...
June 30, 2017: BMC Biology
https://www.readbyqxmd.com/read/28651965/single-molecule-fluorescence-in-situ-hybridisation-for-quantitating-post-transcriptional-regulation-in-drosophila-brains
#6
Lu Yang, Josh Titlow, Darragh Ennis, Carlas Smith, Jessica Mitchell, Florence L Young, Scott Waddell, David Ish-Horowicz, Ilan Davis
RNA in situ hybridization is a powerful method to investigate post-transcriptional regulation, but analysis of intracellular mRNA distributions in thick, complex tissues like the brain poses significant challenges. Here, we describe the application of single-molecule fluorescent in situ hybridization (smFISH) to quantitate primary nascent transcription and post-transcriptional regulation in whole-mount Drosophila larval and adult brains. Combining immunofluorescence and smFISH probes for different regions of a single gene, i...
June 23, 2017: Methods: a Companion to Methods in Enzymology
https://www.readbyqxmd.com/read/28640825/olfactory-learning-without-the-mushroom-bodies-spiking-neural-network-models-of-the-honeybee-lateral-antennal-lobe-tract-reveal-its-capacities-in-odour-memory-tasks-of-varied-complexities
#7
HaDi MaBouDi, Hideaki Shimazaki, Martin Giurfa, Lars Chittka
The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn...
June 2017: PLoS Computational Biology
https://www.readbyqxmd.com/read/28630111/investigation-of-seizure-susceptibility-in-a-drosophila-model-of-human-epilepsy-with-optogenetic-stimulation
#8
Arunesh Saras, Veronica V Wu, Harlan J Brawer, Mark A Tanouye
We examined seizure-susceptibility in a Drosophila model of human epilepsy using optogenetic stimulation of ReaChR opsin. Photostimulation of the seizure-sensitive mutant para(bss1) causes behavioral paralysis that resembles paralysis caused by mechanical stimulation, in many aspects. Electrophysiology shows that photostimulation evokes abnormal seizure-like neuronal firing in para(bss1) followed by a quiescent period resembling synaptic failure and apparently responsible for paralysis. The pattern of neuronal activity concludes with seizure-like activity just prior to recovery (recovery)...
June 19, 2017: Genetics
https://www.readbyqxmd.com/read/28627422/down-regulation-of-kv4-channel-in-drosophila-mushroom-body-neurons-contributes-to-a%C3%AE-42-induced-courtship-memory-deficits
#9
Ge Feng, Jie Pang, Xin Yi, Qian Song, Jiaxing Zhang, Can Li, Guang He, Yong Ping
Accumulation of amyloid-β (Aβ) is widely believed to be an early event in the pathogenesis of Alzheimer's disease (AD). Kv4 is an A-type K(+) channel, and our previous report shows the degradation of Kv4, induced by the Aβ42 accumulation, may be a critical contributor to the hyperexcitability of neurons in a Drosophila AD model. Here, we used well-established courtship memory assay to investigate the contribution of the Kv4 channel to short-term memory (STM) deficits in the Aβ42-expressing AD model. We found that Aβ42 over-expression in Drosophila leads to age-dependent courtship STM loss, which can be also induced by driving acute Aβ42 expression post-developmentally...
June 13, 2017: Neuroscience
https://www.readbyqxmd.com/read/28611605/different-roles-for-honey-bee-mushroom-bodies-and-central-complex-in-visual-learning-of-colored-lights-in-an-aversive-conditioning-assay
#10
Jenny A Plath, Brian V Entler, Nicholas H Kirkerud, Ulrike Schlegel, C Giovanni Galizia, Andrew B Barron
The honey bee is an excellent visual learner, but we know little about how and why it performs so well, or how visual information is learned by the bee brain. Here we examined the different roles of two key integrative regions of the brain in visual learning: the mushroom bodies and the central complex. We tested bees' learning performance in a new assay of color learning that used electric shock as punishment. In this assay a light field was paired with electric shock. The other half of the conditioning chamber was illuminated with light of a different wavelength and not paired with shocks...
2017: Frontiers in Behavioral Neuroscience
https://www.readbyqxmd.com/read/28586659/a-simple-computational-model-of-the-bee-mushroom-body-can-explain-seemingly-complex-forms-of-olfactory-learning-and-memory
#11
Fei Peng, Lars Chittka
No abstract text is available yet for this article.
June 5, 2017: Current Biology: CB
https://www.readbyqxmd.com/read/28585544/serotonin-modulates-a-depression-like-state-in-drosophila-responsive-to-lithium-treatment
#12
Ariane-Saskia Ries, Tim Hermanns, Burkhard Poeck, Roland Strauss
Major depressive disorder (MDD) affects millions of patients; however, the pathophysiology is poorly understood. Rodent models have been developed using chronic mild stress or unavoidable punishment (learned helplessness) to induce features of depression, like general inactivity and anhedonia. Here we report a three-day vibration-stress protocol for Drosophila that reduces voluntary behavioural activity. As in many MDD patients, lithium-chloride treatment can suppress this depression-like state in flies. The behavioural changes correlate with reduced serotonin (5-HT) release at the mushroom body (MB) and can be relieved by feeding the antidepressant 5-hydroxy-L-tryptophan or sucrose, which results in elevated 5-HT levels in the brain...
June 6, 2017: Nature Communications
https://www.readbyqxmd.com/read/28580949/upregulated-energy-metabolism-in-the-drosophila-mushroom-body-is-the-trigger-for-long-term-memory
#13
Pierre-Yves Plaçais, Éloïse de Tredern, Lisa Scheunemann, Séverine Trannoy, Valérie Goguel, Kyung-An Han, Guillaume Isabel, Thomas Preat
Efficient energy use has constrained the evolution of nervous systems. However, it is unresolved whether energy metabolism may resultantly regulate major brain functions. Our observation that Drosophila flies double their sucrose intake at an early stage of long-term memory formation initiated the investigation of how energy metabolism intervenes in this process. Cellular-resolution imaging of energy metabolism reveals a concurrent elevation of energy consumption in neurons of the mushroom body, the fly's major memory centre...
June 5, 2017: Nature Communications
https://www.readbyqxmd.com/read/28554773/modulation-of-neuronal-activity-in-the-drosophila-mushroom-body-by-dopecr-a-unique-dual-receptor-for-ecdysone-and-dopamine
#14
REVIEW
Arianna Lark, Toshihiro Kitamoto, Jean-René Martin
G-protein-coupled receptors (GPCRs) for steroid hormones mediate unconventional steroid signaling and play a significant role in the rapid actions of steroids in a variety of biological processes, including those in the nervous system. However, the effects of these GPCRs on overall neuronal activity remain largely elusive. Drosophila DopEcR is a GPCR that responds to both ecdysone (the major steroid hormone in insects) and dopamine, regulating multiple second messenger systems. Recent studies have revealed that DopEcR is preferentially expressed in the nervous system and involved in behavioral regulation...
May 26, 2017: Biochimica et Biophysica Acta
https://www.readbyqxmd.com/read/28515683/a-population-of-projection-neurons-that-inhibits-the-lateral-horn-but-excites-the-antennal-lobe-through-chemical-synapses-in-drosophila
#15
Kazumichi Shimizu, Mark Stopfer
In the insect olfactory system, odor information is transferred from the antennal lobe (AL) to higher brain areas by projection neurons (PNs) in multiple AL tracts (ALTs). In several species, one of the ALTs, the mediolateral ALT (mlALT), contains some GABAergic PNs; in the Drosophila brain, the great majority of ventral PNs (vPNs) are GABAergic and project through this tract to the lateral horn (LH). Most excitatory PNs (ePNs), project through the medial ALT (mALT) to the mushroom body (MB) and the LH. Recent studies have shown that GABAergic vPNs play inhibitory roles at their axon terminals in the LH...
2017: Frontiers in Neural Circuits
https://www.readbyqxmd.com/read/28505612/behavioral-performance-and-neural-systems-are-robust-to-sensory-injury-in-workers-of-the-ant-pheidole-dentata
#16
Hannah K Waxman, Mario L Muscedere, James F A Traniello
Miniaturized nervous systems have been thought to limit behavioral ability, and animals with miniaturized brains may be less flexible when challenged by injuries resulting in sensory deficits that impact the development, maintenance, and plasticity of small-scale neural networks. We experimentally examined how injuries to sensory structures critical for olfactory ability affect behavioral performance in workers of the ant Pheidole dentata, which have minute brains (0.01 mm3) and primarily rely on the perception and processing of chemical signals and cues to direct their social behavior...
2017: Brain, Behavior and Evolution
https://www.readbyqxmd.com/read/28504254/neural-circuits-for-long-term-water-reward-memory-processing-in-thirsty-drosophila
#17
Wei-Huan Shyu, Tai-Hsiang Chiu, Meng-Hsuan Chiang, Yu-Chin Cheng, Ya-Lun Tsai, Tsai-Feng Fu, Tony Wu, Chia-Lin Wu
The intake of water is important for the survival of all animals and drinking water can be used as a reward in thirsty animals. Here we found that thirsty Drosophila melanogaster can associate drinking water with an odour to form a protein-synthesis-dependent water-reward long-term memory (LTM). Furthermore, we found that the reinforcement of LTM requires water-responsive dopaminergic neurons projecting to the restricted region of mushroom body (MB) β' lobe, which are different from the neurons required for the reinforcement of learning and short-term memory (STM)...
May 15, 2017: Nature Communications
https://www.readbyqxmd.com/read/28502772/representations-of-novelty-and-familiarity-in-a-mushroom-body-compartment
#18
Daisuke Hattori, Yoshinori Aso, Kurtis J Swartz, Gerald M Rubin, L F Abbott, Richard Axel
Animals exhibit a behavioral response to novel sensory stimuli about which they have no prior knowledge. We have examined the neural and behavioral correlates of novelty and familiarity in the olfactory system of Drosophila. Novel odors elicit strong activity in output neurons (MBONs) of the α'3 compartment of the mushroom body that is rapidly suppressed upon repeated exposure to the same odor. This transition in neural activity upon familiarization requires odor-evoked activity in the dopaminergic neuron innervating this compartment...
May 18, 2017: Cell
https://www.readbyqxmd.com/read/28489528/reciprocal-synapses-between-mushroom-body-and-dopamine-neurons-form-a-positive-feedback-loop-required-for-learning
#19
Isaac Cervantes-Sandoval, Anna Phan, Molee Chakraborty, Ronald L Davis
Current thought envisions dopamine neurons conveying the reinforcing effect of the unconditioned stimulus during associative learning to the axons of Drosophila mushroom body Kenyon cells for normal olfactory learning. Here, we show using functional GFP reconstitution experiments that Kenyon cells and dopamine neurons from axoaxonic reciprocal synapses. The dopamine neurons receive cholinergic input via nicotinic acetylcholine receptors from the Kenyon cells; knocking down these receptors impairs olfactory learning revealing the importance of these receptors at the synapse...
May 10, 2017: ELife
https://www.readbyqxmd.com/read/28483586/what-can-tiny-mushrooms-in-fruit-flies-tell-us-about-learning-and-memory
#20
REVIEW
Toshihide Hige
Nervous systems have evolved to translate external stimuli into appropriate behavioral responses. In an ever-changing environment, flexible adjustment of behavioral choice by experience-dependent learning is essential for the animal's survival. Associative learning is a simple form of learning that is widely observed from worms to humans. To understand the whole process of learning, we need to know how sensory information is represented and transformed in the brain, how it is changed by experience, and how the changes are reflected on motor output...
May 5, 2017: Neuroscience Research
keyword
keyword
81079
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"