keyword
MENU ▼
Read by QxMD icon Read
search

"kenyon cells"

keyword
https://www.readbyqxmd.com/read/29127660/exposure-to-a-sublethal-concentration-of-imidacloprid-and-the-side-effects-on-target-and-nontarget-organs-of-apis-mellifera-hymenoptera-apidae
#1
Aline Fernanda Catae, Thaisa Cristina Roat, Marcel Pratavieira, Anally Ribeiro da Silva Menegasso, Mario Sergio Palma, Osmar Malaspina
The use of insecticides has become increasingly frequent, and studies indicate that these compounds are involved in the intoxication of bees. Imidacloprid is a widely used neonicotinoid; thus, we have highlighted the importance of assessing its oral toxicity to Africanized bees and used transmission electron microscopy to investigate the sublethal effects in the brain, the target organ, and the midgut, responsible for the digestion/absorption of food. In addition, the distribution of proteins involved in important biological processes in the brain were evaluated on the 1st day of exposure by MALDI-imaging analysis...
November 10, 2017: Ecotoxicology
https://www.readbyqxmd.com/read/29082071/rapid-adaptive-remote-focusing-microscope-for-sensing-of-volumetric-neural-activity
#2
Mantas Žurauskas, Oliver Barnstedt, Maria Frade-Rodriguez, Scott Waddell, Martin J Booth
The ability to record neural activity in the brain of a living organism at cellular resolution is of great importance for defining the neural circuit mechanisms that direct behavior. Here we present an adaptive two-photon microscope optimized for extraction of neural signals over volumes in intact Drosophila brains, even in the presence of specimen motion. High speed volume imaging was made possible through reduction of spatial resolution while maintaining the light collection efficiency of a high resolution, high numerical aperture microscope...
October 1, 2017: Biomedical Optics Express
https://www.readbyqxmd.com/read/29080790/scalloped-a-member-of-the-hippo-tumor-suppressor-pathway-controls-mushroom-body-size-in-drosophila-brain-by-non-canonical-regulation-of-neuroblast-proliferation
#3
Basavanahalli Nanjundaiah Rohith, Baragur Venkatanarayanasetty Shyamala
Cell proliferation, growth and survival are three different basic processes which converge at determining a fundamental property -the size of an organism. Scalloped (Sd) is the first characterised transcriptional partner to Yorkie (Yki), the downstream effector of the Hippo pathway which is a highly potential and evolutionarily conserved regulator of organ size. Here we have studied the hypomorphic effect of sd on the development of Mushroom Bodies (MBs) in Drosophila brain. We show that, sd non-function results in an increase in the size of MBs...
November 1, 2017: Developmental Biology
https://www.readbyqxmd.com/read/29062138/increased-complexity-of-mushroom-body-kenyon-cell-subtypes-in-the-brain-is-associated-with-behavioral-evolution-in-hymenopteran-insects
#4
Satoyo Oya, Hiroki Kohno, Yooichi Kainoh, Masato Ono, Takeo Kubo
In insect brains, the mushroom bodies (MBs) are a higher-order center for sensory integration and memory. Honeybee (Apis mellifera L.) MBs comprise four Kenyon cell (KC) subtypes: class I large-, middle-, and small-type, and class II KCs, which are distinguished by the size and location of somata, and gene expression profiles. Although these subtypes have only been reported in the honeybee, the time of their acquisition during evolution remains unknown. Here we performed in situ hybridization of tachykinin-related peptide, which is differentially expressed among KC subtypes in the honeybee MBs, in four hymenopteran species to analyze whether the complexity of KC subtypes is associated with their behavioral traits...
October 23, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28941994/the-microrna-ame-mir-279a-regulates-sucrose-responsiveness-of%C3%A2-forager-honey-bees-apis-mellifera
#5
Fang Liu, Tengfei Shi, Wei Yin, Xin Su, Lei Qi, Zachary Y Huang, Shaowu Zhang, Linsheng Yu
Increasing evidence demonstrates that microRNAs (miRNA) play an important role in the regulation of animal behaviours. Honey bees (Apis mellifera) are eusocial insects, with honey bee workers displaying age-dependent behavioural maturation. Many different miRNAs have been implicated in the change of behaviours in honey bees and ame-miR-279a was previously shown to be more highly expressed in nurse bee heads than in those of foragers. However, it was not clear whether this difference in expression was associated with age or task performance...
November 2017: Insect Biochemistry and Molecular Biology
https://www.readbyqxmd.com/read/28921711/foxp-expression-identifies-a-kenyon-cell-subtype-in-the-honeybee-mushroom-bodies-linking-them-to-fruitfly-%C3%AE-%C3%AE-c-neurons
#6
Adriana Schatton, Constance Scharff
The arthropod mushroom bodies (MB) are a higher order sensory integration center. In insects, they play a central role in associative olfactory learning and memory. In Drosophila melanogaster (Dm), the highly ordered connectivity of heterogeneous MB neuron populations has been mapped using sophisticated molecular genetic and anatomical techniques. The MB-core subpopulation was recently shown to express the transcription factor FoxP with relevance for decision-making. Here we report the development and adult distribution of a FoxP-expressing neuron population in the MB of honeybees (Apis mellifera, Am) using in situ hybridization and a custom-made antiserum...
September 16, 2017: European Journal of Neuroscience
https://www.readbyqxmd.com/read/28917001/a-neural-network-model-for-familiarity-and-context-learning-during-honeybee-foraging-flights
#7
Jurek Müller, Martin Nawrot, Randolf Menzel, Tim Landgraf
How complex is the memory structure that honeybees use to navigate? Recently, an insect-inspired parsimonious spiking neural network model was proposed that enabled simulated ground-moving agents to follow learned routes. We adapted this model to flying insects and evaluate the route following performance in three different worlds with gradually decreasing object density. In addition, we propose an extension to the model to enable the model to associate sensory input with a behavioral context, such as foraging or homing...
September 15, 2017: Biological Cybernetics
https://www.readbyqxmd.com/read/28796202/the-complete-connectome-of-a-learning-and-memory-centre-in-an-insect-brain
#8
Katharina Eichler, Feng Li, Ashok Litwin-Kumar, Youngser Park, Ingrid Andrade, Casey M Schneider-Mizell, Timo Saumweber, Annina Huser, Claire Eschbach, Bertram Gerber, Richard D Fetter, James W Truman, Carey E Priebe, L F Abbott, Andreas S Thum, Marta Zlatic, Albert Cardona
Associating stimuli with positive or negative reinforcement is essential for survival, but a complete wiring diagram of a higher-order circuit supporting associative memory has not been previously available. Here we reconstruct one such circuit at synaptic resolution, the Drosophila larval mushroom body. We find that most Kenyon cells integrate random combinations of inputs but that a subset receives stereotyped inputs from single projection neurons. This organization maximizes performance of a model output neuron on a stimulus discrimination task...
August 9, 2017: Nature
https://www.readbyqxmd.com/read/28728024/origins-of-cell-type-specific-olfactory-processing-in-the-drosophila-mushroom-body-circuit
#9
Kengo Inada, Yoshiko Tsuchimoto, Hokto Kazama
How cell-type-specific physiological properties shape neuronal functions in a circuit remains poorly understood. We addressed this issue in the Drosophila mushroom body (MB), a higher olfactory circuit, where neurons belonging to distinct glomeruli in the antennal lobe feed excitation to three types of intrinsic neurons, α/β, α'/β', and γ Kenyon cells (KCs). Two-photon optogenetics and intracellular recording revealed that whereas glomerular inputs add similarly in all KCs, spikes were generated most readily in α'/β' KCs...
July 19, 2017: Neuron
https://www.readbyqxmd.com/read/28718765/a-connectome-of-a-learning-and-memory-center-in-the-adult-drosophila-brain
#10
Shin-Ya Takemura, Yoshinori Aso, Toshihide Hige, Allan Wong, Zhiyuan Lu, C Shan Xu, Patricia K Rivlin, Harald Hess, Ting Zhao, Toufiq Parag, Stuart Berg, Gary Huang, William Katz, Donald J Olbris, Stephen Plaza, Lowell Umayam, Roxanne Aniceto, Lei-Ann Chang, Shirley Lauchie, Omotara Ogundeyi, Christopher Ordish, Aya Shinomiya, Christopher Sigmund, Satoko Takemura, Julie Tran, Glenn C Turner, Gerald M Rubin, Louis K Scheffer
Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB's α lobe, using a dataset of isotropic 8 nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment...
July 18, 2017: ELife
https://www.readbyqxmd.com/read/28686887/can-the-exposure-of-apis-mellifera-hymenoptera-apiadae-larvae-to-a-field-concentration-of-thiamethoxam-affect-newly-emerged-bees
#11
Priscila Sepúlveda Friol, Aline Fernanda Catae, Daiana Antonia Tavares, Osmar Malaspina, Thaisa Cristina Roat
The use of insecticides on crops can affect non-target insects, such as bees. In addition to the adult bees, larvae can be exposed to the insecticide through contaminated floral resources. Therefore, this study aimed to investigate the possible effects of the exposure of A. mellifera larvae to a field concentration of thiamethoxam (0.001 ng/μL thiamethoxam) on larval and pupal survival and on the percentage of adult emergence. Additionally, its cytotoxic effects on the digestive cells of midgut, Malpighian tubules cells and Kenyon cells of the brain of newly emerged A...
October 2017: Chemosphere
https://www.readbyqxmd.com/read/28676744/trace-conditioning-in-drosophila-induces-associative-plasticity-in-mushroom-body-kenyon-cells-and-dopaminergic-neurons
#12
Kristina V Dylla, Georg Raiser, C Giovanni Galizia, Paul Szyszka
Dopaminergic neurons (DANs) signal punishment and reward during associative learning. In mammals, DANs show associative plasticity that correlates with the discrepancy between predicted and actual reinforcement (prediction error) during classical conditioning. Also in insects, such as Drosophila, DANs show associative plasticity that is, however, less understood. Here, we study associative plasticity in DANs and their synaptic partners, the Kenyon cells (KCs) in the mushroom bodies (MBs), while training Drosophila to associate an odorant with a temporally separated electric shock (trace conditioning)...
2017: Frontiers in Neural Circuits
https://www.readbyqxmd.com/read/28502772/representations-of-novelty-and-familiarity-in-a-mushroom-body-compartment
#13
Daisuke Hattori, Yoshinori Aso, Kurtis J Swartz, Gerald M Rubin, L F Abbott, Richard Axel
Animals exhibit a behavioral response to novel sensory stimuli about which they have no prior knowledge. We have examined the neural and behavioral correlates of novelty and familiarity in the olfactory system of Drosophila. Novel odors elicit strong activity in output neurons (MBONs) of the α'3 compartment of the mushroom body that is rapidly suppressed upon repeated exposure to the same odor. This transition in neural activity upon familiarization requires odor-evoked activity in the dopaminergic neuron innervating this compartment...
May 18, 2017: Cell
https://www.readbyqxmd.com/read/28489528/reciprocal-synapses-between-mushroom-body-and-dopamine-neurons-form-a-positive-feedback-loop-required-for-learning
#14
Isaac Cervantes-Sandoval, Anna Phan, Molee Chakraborty, Ronald L Davis
Current thought envisions dopamine neurons conveying the reinforcing effect of the unconditioned stimulus during associative learning to the axons of Drosophila mushroom body Kenyon cells for normal olfactory learning. Here, we show using functional GFP reconstitution experiments that Kenyon cells and dopamine neurons from axoaxonic reciprocal synapses. The dopamine neurons receive cholinergic input via nicotinic acetylcholine receptors from the Kenyon cells; knocking down these receptors impairs olfactory learning revealing the importance of these receptors at the synapse...
May 10, 2017: ELife
https://www.readbyqxmd.com/read/28472083/gene-expression-and-immunohistochemical-analyses-of-mkast-suggest-its-late-pupal-and-adult-specific-functions-in-the-honeybee-brain
#15
Atsuhiro Yamane, Hiroki Kohno, Tsubomi Ikeda, Kumi Kaneko, Atsushi Ugajin, Toshiyuki Fujita, Takekazu Kunieda, Takeo Kubo
In insect brains, the mushroom bodies (MBs, a higher center) comprise intrinsic neurons, termed Kenyon cells (KCs). We previously showed that the honeybee (Apis mellifera L.) MBs comprise four types of KCs, in addition to the previously known three types of KCs: class I large-type KCs (lKCs), class I small-type KCs (sKCs) and class II KCs, novel class I 'middle-type' KCs (mKCs), which are characterized by the preferential expression of a gene, termed mKast. Although mKast was originally discovered during the search for genes whose expression is enriched in the optic lobes (OLs) in the worker brain, subsequent analysis revealed that the gene is expressed in an mKC-preferential manner in the MBs...
2017: PloS One
https://www.readbyqxmd.com/read/28416632/null-epac-mutants-reveal-a-sequential-order-of-versatile-camp-effects-during-drosophila-aversive-odor-learning
#16
Antje Richlitzki, Philipp Latour, Martin Schwärzel
Here, we define a role of the cAMP intermediate EPAC in Drosophila aversive odor learning by means of null epac mutants. Complementation analysis revealed that EPAC acts downstream from the rutabaga adenylyl cyclase and in parallel to protein kinase A. By means of targeted knockdown and genetic rescue we identified mushroom body Kenyon cells (KCs) as a necessary and sufficient site of EPAC action. We provide mechanistic insights by analyzing acquisition dynamics and using the "performance increment" as a means to access the trial-based sequential organization of odor learning...
May 2017: Learning & Memory
https://www.readbyqxmd.com/read/28416593/two-components-of-aversive-memory-in-drosophila-anesthesia-sensitive-and-anesthesia-resistant-memory-require-distinct-domains-within-the-rgk1-small-gtpase
#17
Satoshi Murakami, Maki Minami-Ohtsubo, Ryuichiro Nakato, Katsuhiko Shirahige, Tetsuya Tabata
Multiple components have been identified that exhibit different stabilities for aversive olfactory memory in Drosophila These components have been defined by behavioral and genetic studies and genes specifically required for a specific component have also been identified. Intermediate-term memory generated after single cycle conditioning is divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We determined that the ASM and ARM pathways converged on the Rgk1 small GTPase and that the N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation...
May 31, 2017: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
https://www.readbyqxmd.com/read/28396840/suppression-of-a-single-pair-of-mushroom-body-output-neurons-in-drosophila-triggers-aversive-associations
#18
Yutaro Ueoka, Makoto Hiroi, Takashi Abe, Tetsuya Tabata
Memory includes the processes of acquisition, consolidation and retrieval. In the study of aversive olfactory memory in Drosophila melanogaster, flies are first exposed to an odor (conditioned stimulus, CS+) that is associated with an electric shock (unconditioned stimulus, US), then to another odor (CS-) without the US, before allowing the flies to choose to avoid one of the two odors. The center for memory formation is the mushroom body which consists of Kenyon cells (KCs), dopaminergic neurons (DANs) and mushroom body output neurons (MBONs)...
April 2017: FEBS Open Bio
https://www.readbyqxmd.com/read/28215558/optimal-degrees-of-synaptic-connectivity
#19
Ashok Litwin-Kumar, Kameron Decker Harris, Richard Axel, Haim Sompolinsky, L F Abbott
Synaptic connectivity varies widely across neuronal types. Cerebellar granule cells receive five orders of magnitude fewer inputs than the Purkinje cells they innervate, and cerebellum-like circuits, including the insect mushroom body, also exhibit large divergences in connectivity. In contrast, the number of inputs per neuron in cerebral cortex is more uniform and large. We investigate how the dimension of a representation formed by a population of neurons depends on how many inputs each neuron receives and what this implies for learning associations...
March 8, 2017: Neuron
https://www.readbyqxmd.com/read/27988494/a-high-bandwidth-dual-channel-olfactory-stimulator-for-studying-temporal-sensitivity-of-olfactory-processing
#20
Georg Raiser, C Giovanni Galizia, Paul Szyszka
Animals encounter fine-scale temporal patterns of odorant mixtures that contain information about the distance and number of odorant sources. To study the role of such temporal cues for odorant detection and source localization, one needs odorant delivery devices that are capable of mimicking the temporal stimulus statistics of natural odor plumes. However, current odorant delivery devices either lack temporal resolution or are limited to a single odorant channel. Here, we present an olfactory stimulator that features precise control of high-bandwidth stimulus dynamics, which allows generating arbitrary fluctuating binary odorant mixtures...
February 2017: Chemical Senses
keyword
keyword
81075
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"