keyword
MENU ▼
Read by QxMD icon Read
search

trm5

keyword
https://www.readbyqxmd.com/read/28601227/trmd-a-methyl-transferase-for-trna-methylation-with-m-1-g37
#1
Ya-Ming Hou, Ryuma Matsubara, Ryuichi Takase, Isao Masuda, Joanna I Sulkowska
TrmD is an S-adenosyl methionine (AdoMet)-dependent methyl transferase that synthesizes the methylated m(1)G37 in tRNA. TrmD is specific to and essential for bacterial growth, and it is fundamentally distinct from its eukaryotic and archaeal counterpart Trm5. TrmD is unusual by using a topological protein knot to bind AdoMet. Despite its restricted mobility, the TrmD knot has complex dynamics necessary to transmit the signal of AdoMet binding to promote tRNA binding and methyl transfer. Mutations in the TrmD knot block this intramolecular signaling and decrease the synthesis of m(1)G37-tRNA, prompting ribosomes to +1-frameshifts and premature termination of protein synthesis...
2017: Enzymes
https://www.readbyqxmd.com/read/28335556/trm5-and-trmd-two-enzymes-from-distinct-origins-catalyze-the-identical-trna-modification-m%C3%A2-g37
#2
REVIEW
Sakurako Goto-Ito, Takuhiro Ito, Shigeyuki Yokoyama
The N¹-atom of guanosine at position 37 in transfer RNA (tRNA) is methylated by tRNA methyltransferase 5 (Trm5) in eukaryotes and archaea, and by tRNA methyltransferase D (TrmD) in bacteria. The resultant modified nucleotide m¹G37 positively regulates the aminoacylation of the tRNA, and simultaneously functions to prevent the +1 frameshift on the ribosome. Interestingly, Trm5 and TrmD have completely distinct origins, and therefore bear different tertiary folds. In this review, we describe the different strategies utilized by Trm5 and TrmD to recognize their substrate tRNAs, mainly based on their crystal structures complexed with substrate tRNAs...
March 21, 2017: Biomolecules
https://www.readbyqxmd.com/read/27629654/crystal-structures-of-the-bifunctional-trna-methyltransferase-trm5a
#3
Caiyan Wang, Qian Jia, Ran Chen, Yuming Wei, Juntao Li, Jie Ma, Wei Xie
tRNA methyltransferase Trm5 catalyses the transfer of a methyl group from S-adenosyl-L-methionine to G37 in eukaryotes and archaea. The N1-methylated guanosine is the product of the initial step of the wyosine hypermodification, which is essential for the maintenance of the reading frame during translation. As a unique member of this enzyme family, Trm5a from Pyrococcus abyssi (PaTrm5a) catalyses not only the methylation of N1, but also the further methylation of C7 on 4-demethylwyosine at position 37 to produce isowyosine, but the mechanism for the double methylation is poorly understood...
2016: Scientific Reports
1
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"