Read by QxMD icon Read

Pain nerve blockers

Anne-Marie Malfait, Richard J Miller
Worldwide, osteoarthritis (OA) is one of the leading causes of chronic pain, for which adequate relief is not available. Ongoing peripheral input from the affected joint is a major factor in OA-associated pain. Therefore, this review focuses predominantly on peripheral targets emerging in the preclinical and clinical arena. Nerve growth factor is the most advanced of these targets, and its blockade has shown tremendous promise in clinical trials in knee OA. A number of different types of ion channels, including voltage-gated sodium channels and calcium channels, transient receptor potential channels, and acid-sensing ion channels, are important for neuronal excitability and play a role in pain genesis...
October 12, 2016: Current Osteoporosis Reports
Cheng-Yuan Lai, Yu-Cheng Ho, Ming-Chun Hsieh, Hsueh-Hsiao Wang, Jen-Kun Cheng, Yat-Pang Chau, Hsien-Yu Peng
UNLABELLED: Spinal plasticity, a key process mediating neuropathic pain development, requires ubiquitination-dependent protein turnover. Presynaptic active zone proteins have a crucial role in regulating vesicle exocytosis, which is essential for synaptic plasticity. Nevertheless, the mechanism for ubiquitination-regulated turnover of presynaptic active zone proteins in the progression of spinal plasticity-associated neuropathic pain remains unclear. Here, after research involving Sprague Dawley rats, we reported that spinal nerve ligation (SNL), in addition to causing allodynia, enhances the Rab3-interactive molecule-1α (RIM1α), a major active zone protein presumed to regulate neural plasticity, specifically in the synaptic plasma membranes (SPMs) of the ipsilateral dorsal horn...
September 14, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Bálint Botz, Kata Bölcskei, Zsuzsanna Helyes
Chronic inflammatory diseases and persistent pain of different origin represent common medical, social, and economic burden, and their pharmacotherapy is still an unresolved issue. Therefore, there is a great and urgent need to develop anti-inflammatory and analgesic agents with novel mechanisms of action, but it is a very challenging task. The main problem is the relatively large translational gap between the preclinical experimental data and the clinical results due to characteristics of the models, difficulties with the investigational techniques particularly for pain, as well as species differences in the mechanisms...
August 31, 2016: Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology
Weihua Ding, Zerong You, Shiqian Shen, Lucy Chen, Shengmei Zhu, Jianren Mao
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability in both peripheral and central nerve systems. Emerging evidence indicates that HCN channels are involved in the development and maintenance of chronic pain. However, the impact of HCN channel activity in the thalamus on chronic pain has not been examined. In this report, we evaluated the effect on nociceptive behaviors after infusion of a HCN channel blocker ZD7288 into the ventral posterolateral (VPL) nucleus of the thalamus in rats with neuropathic pain or monoarthritis...
September 19, 2016: Neuroscience Letters
Elisangela Bressan, Filip Touska, Irina Vetter, Katrin Kistner, Tatjana I Kichko, Nathália B Teixeira, Gisele Picolo, Yara Cury, Richard J Lewis, Michael J M Fischer, Katharina Zimmermann, Peter W Reeh
Crotalphine is a structural analogue to a novel analgesic peptide that was first identified in the crude venom from the South American rattlesnake Crotalus durissus terrificus. Although crotalphine's analgesic effect is well established, its direct mechanism of action remains unresolved. The aim of the present study was to investigate the effect of crotalphine on ion channels in peripheral pain pathways. We found that picomolar concentrations of crotalphine selectively activate heterologously expressed and native TRPA1 ion channels...
November 2016: Pain
R Alan North
Extracellular adenosine 5'-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2X receptors have a widespread tissue distribution...
August 5, 2016: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
Jaime Hinzpeter, Cristián Barrientos, Álvaro Zamorano, Álvaro Martinez, Miguel Palet, Rodrigo Wulf, Maximiliano Barahona, Joaquín M Sepúlveda, Matias Guerra, Tamara Bustamante, Miguel Del Campo, Eric Tapia, Nestor Lagos
Improvements in pain management techniques in the last decade have had a major impact on the practice of total knee arthroplasty (TKA). Gonyautoxin are phycotoxins, whose molecular mechanism of action is a reversible block of the voltage-gated sodium channels at the axonal level, impeding nerve impulse propagation. This study was designed to evaluate the clinical efficacy of Gonyautoxin infiltration, as a long acting pain blocker in TKA. Fifteen patients received a total dose of 40 μg of Gonyautoxin during the TKA operation...
September 1, 2016: Toxicon: Official Journal of the International Society on Toxinology
Won Uk Koh, Jin Woo Shin, Ji-Yeon Bang, Sae Gyeol Kim, Jun-Gol Song
BACKGROUND: Nefopam hydrochloride is a centrally acting compound that induces antinociceptive and antihyperalgesic properties in neuropathic pain models. Previous reports have shown that activation of adenosine triphosphate (ATP)-sensitive and calcium-activated potassium (KATP and KCa2+) channels has antiallodynic effects in neuropathic pain. In the present study, we evaluated the relationship between potassium channels and nefopam to determine whether the antiallodynic effects of nefopam are mediated by potassium channels in a neuropathic pain model...
September 2016: Anesthesia and Analgesia
János Tajti, Délia Szok, Zsófia Majláth, Anett Csáti, Anna Petrovics-Balog, László Vécsei
INTRODUCTION: Painful diabetic neuropathy (PDN) is a disabling pain condition. Its pathomechanism remains unknown, but a sensitization and neuronal hyperexcitabilty have been suggested. Only symptomatic pharmacological pain management treatment is currently available. AREAS COVERED: The origin of PDN is enigmatic, and the evidence-based therapeutic guidelines therefore consist only of antidepressants and antiepileptics as first-line recommended drugs. This article relates to a MEDLINE/PubMed systematic search (2005-2015)...
July 2016: Expert Opinion on Drug Metabolism & Toxicology
Melih Ö Celik, Dominika Labuz, Karen Henning, Melanie Busch-Dienstfertig, Claire Gaveriaux-Ruff, Brigitte L Kieffer, Andreas Zimmer, Halina Machelska
Opioids are the most powerful analgesics. As pain is driven by sensory transmission and opioid receptors couple to inhibitory G proteins, according to the classical concept, opioids alleviate pain by activating receptors on neurons and blocking the release of excitatory mediators (e.g., substance P). Here we show that analgesia can be mediated by opioid receptors in immune cells. We propose that activation of leukocyte opioid receptors leads to the secretion of opioid peptides Met-enkephalin, β-endorphin and dynorphin A (1-17), which subsequently act at local neuronal receptors, to relieve pain...
October 2016: Brain, Behavior, and Immunity
Chuanjie Wu, Nanchang Xie, Yajun Lian, Hongliang Xu, Chen Chen, Yake Zheng, Yuan Chen, Haifeng Zhang
BACKGROUND: BoNT-A is often used in the clinical treatment for movement disorders. In recent years, various clinical studies suggest that BoNT-A can effectively alleviate pain caused by trigeminal neuralgia (TN); however, its mechanism remains unclear. METHODS: In this study, we used a lab rat model for TN produced by chronic constriction injury of the infraorbital nerve (ION-CCI). Restrained rats were injected subcutaneously with BoNT-A into the whisker pad tissue (ipsilaterally to the nerve injury) 14 days after the ION-CCI...
2016: SpringerPlus
Kaori Kaji, Masamichi Shinoda, Kuniya Honda, Syumpei Unno, Noriyoshi Shimizu, Koichi Iwata
BACKGROUND: Clinically, it is well known that injury of mandibular nerve fiber induces persistent ectopic pain which can spread to a wide area of the orofacial region innervated by the uninjured trigeminal nerve branches. However, the exact mechanism of such persistent ectopic orofacial pain is not still known. The present study was undertaken to determine the role of connexin 43 in the trigeminal ganglion on mechanical hypersensitivity in rat whisker pad skin induced by inferior alveolar nerve injury...
2016: Molecular Pain
Fumiko Sekiguchi, Yuma Kawara, Maho Tsubota, Eri Kawakami, Tomoka Ozaki, Yudai Kawaishi, Shiori Tomita, Daiki Kanaoka, Shigeru Yoshida, Tsuyako Ohkubo, Atsufumi Kawabata
T-type Ca channels (T channels), particularly Cav3.2 among the 3 isoforms, play a role in neuropathic and visceral pain. We thus characterized the effects of RQ-00311651 (RQ), a novel T-channel blocker, in HEK293 cells transfected with human Cav3.1 or Cav3.2 by electrophysiological and fluorescent Ca signaling assays, and also evaluated the antiallodynic/antihyperalgesic activity of RQ in somatic, visceral, and neuropathic pain models in rodents. RQ-00311651 strongly suppressed T currents when tested at holding potentials of -65 ∼ -60 mV, but not -80 mV, in the Cav3...
August 2016: Pain
Carmen Sircuta, Alexandra Lazar, Leonard Azamfirei, Mária Baranyi, E Sylvester Vizi, Zoltán Borbély
Because local anesthetics are known to inhibit both sodium and potassium channels, and anesthetic properties have been attributed to the former effect, we compared their effects with those of tetrodotoxin (TTX), a selective Na(+) channel inhibitor with anesthetic activity, and 4-aminopyridine (4-AP), a selective potassium channel blocker with convulsive activity, on transmitter release during rest and in response to field (axonal) stimulation using the microvolume perfusion method and isolated prefrontal cortex and spinal cord slice preparations loaded with the radioactive transmitters [(3)H]dopamine ([(3)H]DA) and [(3)H]noradrenaline ([(3)H]NA)...
June 2016: Brain Research Bulletin
Bing Hu, Henri Doods, Rolf-Detlef Treede, Angelo Ceci
The current study assessed whether antidepressant and/or antinociceptive drugs, duloxetine, fluoxetine as well as (±)-8-hydroxy-2-[di-n-propylamino] tetralin (8-OH-DPAT), are able to reverse depression-like behaviour in animals with chronic neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve in rats was selected as neuropathic pain model. Mechanical hypersensitivity and depression-like behaviour were evaluated 4 weeks after surgery by "electronic algometer" and forced swimming test (FST), which measured the time of immobility, and active behaviours climbing and swimming...
April 21, 2016: Neuroscience Letters
Justin S Ko, Kelly A Eddinger, Mila Angert, Andrei V Chernov, Jennifer Dolkas, Alex Y Strongin, Tony L Yaksh, Veronica I Shubayev
Mechanosensory fibers are enveloped by myelin, a unique multilamellar membrane permitting saltatory neuronal conduction. Damage to myelin is thought to contribute to severe pain evoked by innocuous tactile stimulation (i.e., mechanical allodynia). Our earlier (Liu et al., 2012) and present data demonstrate that a single injection of a myelin basic protein-derived peptide (MBP84-104) into an intact sciatic nerve produces a robust and long-lasting (>30days) mechanical allodynia in female rats. The MBP84-104 peptide represents the immunodominant epitope and requires T cells to maintain allodynia...
August 2016: Brain, Behavior, and Immunity
Yishen Chen, Victor A Derkach, Peter A Smith
Synapses transmitting nociceptive information in the spinal dorsal horn undergo enduring changes following peripheral nerve injury. Indeed, such injury alters the expression of the GluA2 subunit of glutamatergic AMPA receptors (AMPARs) in the substantia gelatinosa and this predicts altered channel conductance and calcium permeability, leading to an altered function of excitatory synapses. We therefore investigated the functional properties of synaptic AMPA receptors in rat substantia gelatinosa neurons following 10-20d chronic constriction injury (CCI) of the sciatic nerve; a model of neuropathic pain...
May 2016: Experimental Neurology
Marc C Karam, Rana Merckbawi, Sara Salman, Ali Mobasheri
Infection with a high dose of the intracellular parasitic protozoan Leishmania major induces a sustained hyperalgesia in susceptible BALB/c mice accompanied by up-regulation of the pro-inflammatory cytokines IL-1β and IL-6. Interleukin-13 (IL-13) has been shown to reduce this hyperalgesia (despite increased levels of IL-6) and the levels of IL-1β during and after the treatment period. These findings favor the cytokine cascade leading to the production of sympathetic amines (involving TNF-α and KC) over prostaglandins (involving IL-lβ and IL-6) as the final mediators of hyperalgesia...
2016: Frontiers in Pharmacology
Tony L Yaksh, Casey Fisher, Tyler Hockman, Ashley Wiese
Targeting analgesic drugs for spinal delivery reflects the fact that while the conscious experience of pain is mediated supraspinally, input initiated by high intensity stimuli, tissue injury and/or nerve injury is encoded at the level of the spinal dorsal horn and this output informs the brain as to the peripheral environment. This encoding process is subject to strong upregulation resulting in hyperesthetic states and down regulation reducing the ongoing processing of nociceptive stimuli reversing the hyperesthesia and pain processing...
February 10, 2016: Current Neuropharmacology
Xiu-Chao Wang, Shan Wang, Ming Zhang, Fang Gao, Chun Yin, Hao Li, Ying Zhang, San-Jue Hu, Jian-Hong Duan
It is known that some patients with diabetic neuropathy are usually accompanied by abnormal painful sensations. Evidence has accumulated that diabetic neuropathic pain is associated with the hyperexcitability of peripheral nociceptors. Previously, we demonstrated that reduced conduction failure of polymodal nociceptive C-fibers and enhanced voltage-dependent sodium currents of small dorsal root ganglion (DRG) neurons contribute to diabetic hyperalgesia. To further investigate whether and how potassium channels are involved in the conduction failure, α-dendrotoxin (α-DTX), a selective blocker of the low-threshold sustained Kv1 channel, was chosen to examine its functional capability in modulating the conduction properties of polymodal nociceptive C-fibers and the excitability of sensory neurons...
February 1, 2016: Journal of Neurophysiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"