keyword
MENU ▼
Read by QxMD icon Read
search

Tissue scaffold

keyword
https://www.readbyqxmd.com/read/28088670/fibrin-hydrogels-induce-mixed-dorsal-ventral-spinal-neuron-identities-during-differentiation-of-human-induced-pluripotent-stem-cells
#1
John M Edgar, Meghan Robinson, Stephanie M Willerth
: We hypothesized that generating spinal motor neurons (sMNs) from human induced pluripotent stem cell (hiPSC)-derived neural aggregates (NAs) using a chemically-defined differentiation protocol would be more effective inside of 3D fibrin hydrogels compared to 2D poly-L-ornithine(PLO)/laminin-coated tissue culture plastic surfaces. We performed targeted RNA-Seq using next generation sequencing to determine the substrate-specific differences in gene expression that regulate cell phenotype...
January 11, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28087714/dlg5-connects-cell-polarity-and-hippo-signaling-protein-networks-by-linking-par-1-with-mst1-2
#2
Julian Kwan, Anna Sczaniecka, Emad Heidary Arash, Liem Nguyen, Chia-Chun Chen, Srdjana Ratkovic, Olga Klezovitch, Liliana Attisano, Helen McNeill, Andrew Emili, Valeri Vasioukhin
Disruption of apical-basal polarity is implicated in developmental disorders and cancer; however, the mechanisms connecting cell polarity proteins with intracellular signaling pathways are largely unknown. We determined previously that membrane-associated guanylate kinase (MAGUK) protein discs large homolog 5 (DLG5) functions in cell polarity and regulates cellular proliferation and differentiation via undefined mechanisms. We report here that DLG5 functions as an evolutionarily conserved scaffold and negative regulator of Hippo signaling, which controls organ size through the modulation of cell proliferation and differentiation...
December 15, 2016: Genes & Development
https://www.readbyqxmd.com/read/28087487/bioprinting-for-vascular-and-vascularized-tissue-biofabrication
#3
REVIEW
Pallab Datta, Bugra Ayan, Ibrahim T Ozbolat
: Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date...
January 10, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28087448/fabrication-and-characterization-of-electrospun-cellulose-nano-hydroxyapatite-nanofibers-for-bone-tissue-engineering
#4
Chenghong Ao, Yan Niu, Ximu Zhang, Xu He, Wei Zhang, Canhui Lu
Nanofibrous scaffolds from cotton cellulose and nano-hydroxyapatite (nano-HA) were electrospun for bone tissue engineering. The solution properties of cellulose/nano-HA spinning dopes and their associated electrospinnability were characterized. Morphological, thermal and mechanical properties of the electrospun cellulose/nano-HA nanocomposite nanofibers (ECHNN) were measured and the biocompatibility of ECHNN with human dental follicle cells (HDFCs) was evaluated. Scanning electron microscope (SEM) images indicated that the average diameter of ECHNN increased with a higher nano-HA loading and the fiber diameter distributions were well within the range of natural ECM (extra cellular matrix) fibers (50-500nm)...
January 10, 2017: International Journal of Biological Macromolecules
https://www.readbyqxmd.com/read/28087378/new-scaffolds-encapsulating-tgf-%C3%AE-3-bmp-7-combinations-driving-strong-chondrogenic-differentiation
#5
Jose Crecente-Campo, Erea Borrajo, Anxo Vidal, Marcos Garcia-Fuentes
The regeneration of articular cartilage remains an unresolved question despite the current access to a variety of tissue scaffolds activated with growth factors relevant to this application. Further advances might result from combining more than one of these factors; here, we propose a scaffold composition optimized for the dual delivery of BMP-7 and TGF-β3, two proteins with described chondrogenic activity. First, we tested in a mesenchymal stem cell micromass culture with TGF-β3 whether the exposure to microspheres loaded with BMP-7 would improve cartilage formation...
January 10, 2017: European Journal of Pharmaceutics and Biopharmaceutics
https://www.readbyqxmd.com/read/28079984/medical-application-of-glycosaminoglycans-a-review
#6
REVIEW
Alexander Köwitsch, Guoying Zhou, Thomas Groth
The characteristic molecular composition of the different glycosaminoglycans (GAG) is related to their role as structural components and regulators of a multitude of functions of proteins, cells and tissues in the human body. Therefore, it is not surprising that GAG are widely used as coating materials for implants, components of 3D-constructs like tissue engineering scaffolds and hydrogels, but also as diagnostic devices like biosensors and in controlled release applications. Beside a physisorption or encapsulation of GAG, these applications often require their chemical modification to allow a stable covalent attachment on surfaces or cross-linking reactions with other molecules...
January 12, 2017: Journal of Tissue Engineering and Regenerative Medicine
https://www.readbyqxmd.com/read/28079980/induction-of-mesenchymal-stem-cell-differentiation-in-the-absence-of-soluble-inducer-for-cutaneous-wound-regeneration-by-a-chitin-nanofibers-based-hydrogel
#7
Kangquan Shou, Yao Huang, Baiwen Qi, Xiang Hu, Zhanjun Ma, Ang Lu, Chao Jian, Lina Zhang, Aixi Yu
Transplantation of bone marrow mesenchymal stem cells (BMSCs) has been considered as a promising strategy for wound healing. However, poor viability of engrafted BMSCs and limited capabilities of differentiation into the desired cell types in wounds often hinder their application. Few studies report the induction of BMSCs differentiation into the skin regeneration related cell types using natural biopolymer, e.g., chitin and its derivative. Here we utilized a chitin nanofibers(CNFs) hydrogel as a directive cue to induce BMSCs differentiation for enhancing cutaneous wound regeneration in the absence of cell-differentiating factors...
January 12, 2017: Journal of Tissue Engineering and Regenerative Medicine
https://www.readbyqxmd.com/read/28079884/lack-of-collagen-xv-is-protective-after-ischemic-stroke-in-mice
#8
Hiramani Dhungana, Mikko T Huuskonen, Taina Pihlajaniemi, Ritva Heljasvaara, Denis Vivien, Katja M Kanninen, Tarja Malm, Jari Koistinaho, Sighild Lemarchant
Collagens are key structural components of basement membranes, providing a scaffold for other components or adhering cells. Collagens and collagen-derived active fragments contribute to biological activities such as cell growth, differentiation and migration. Here, we report that collagen XV knock-out (ColXV KO) mice are resistant to experimental ischemic stroke. Interestingly, the infarcts of ColXV KO mice were as small as those of wild-type (WT) mice thrombolysed with recombinant tissue plasminogen activator (rtPA), the actual treatment for ischemic stroke...
January 12, 2017: Cell Death & Disease
https://www.readbyqxmd.com/read/28078820/improvement-of-the-in-vivo-cellular-repopulation-of-decellularized-cardiovascular-tissues-by-a-detergent-free-non-proteolytic-actin-disassembling-regimen
#9
Alexander Assmann, Marc Struß, Franziska Schiffer, Friederike Heidelberg, Hiroshi Munakata, Elena V Timchenko, Pavel E Timchenko, Tim Kaufmann, Khon Huynh, Yukiharu Sugimura, Quentin Leidl, Antonio Pinto, Volker R Stoldt, Artur Lichtenberg, Payam Akhyari
Low immunogenicity and high repopulation capacity are crucial determinants for the functional and structural performance of acellular cardiovascular implants. The present study evaluates a detergent-free, non-proteolytic, actin-disassembling regimen (BIO) for decellularization of heart valve and vessel grafts, particularly focusing on their bio-functionality. Rat aortic conduits (rAoC; n = 89) and porcine aortic valve samples (n = 106) are decellularized using detergents (group DET) or the BIO regimen...
January 11, 2017: Journal of Tissue Engineering and Regenerative Medicine
https://www.readbyqxmd.com/read/28078807/traumatized-muscle-derived-multipotent-progenitor-cells-recruit-endothelial-cells-through-vascular-endothelial-growth-factor-a-action
#10
Heidi R H Supanc, Shannon Gorman, Rocky S Tuan
Traumatized muscle, such as that debrided from blast injury sites, is considered a promising and convenient tissue source for multipotent progenitor cells (MPCs), a population of adult mesenchymal stem cell (MSC)-like cells. The present study aimed to assess the regenerative therapeutic potential of human traumatized muscle-derived MPCs, e.g., for injury repair in the blast-traumatized extremity, by comparing their pro-angiogenic potential in vitro and capillary recruitment activity in vivo to those of MSCs isolated from human bone marrow, a widely-used tissue source...
January 12, 2017: Journal of Tissue Engineering and Regenerative Medicine
https://www.readbyqxmd.com/read/28077291/in-vitro-dentin-barrier-cytotoxicity-testing-of-some-dental-restorative-materials
#11
R D Jiang, H Lin, G Zheng, X M Zhang, Q Du, M Yang
OBJECTIVES: To investigate the cytotoxicity of four dental restorative materials in three-dimensional (3D) L929 cell cultures using a dentin barrier test. METHODS: The cytotoxicities of light-cured glass ionomer cement (Vitrebond), total-etching adhesive (GLUMA Bond5), and two self-etching adhesives (GLUMA Self Etch and Single Bond Universal) were evaluated. The permeabilities of human dentin disks with thicknesses of 300, 500, and 1000μm were standardized using a hydraulic device...
January 8, 2017: Journal of Dentistry
https://www.readbyqxmd.com/read/28077137/aberrant-methylation-of-dact1-and-dact2-are-associated-with-tumor-progression-and-poor-prognosis-in-esophageal-squamous-cell-carcinoma
#12
Yan-Li Guo, Bao-En Shan, Wei Guo, Zhi-Ming Dong, Zhen Zhou, Su-Peng Shen, Xin Guo, Jia Liang, Gang Kuang
BACKGROUND: The DACT (Dishevelled-associated antagonist of β-catenin) family of scaffold proteins may play important roles in tumorigenesis. However, the epigenetic changes of DACT1, 2, 3 and their effect on esophageal squamous cell carcinoma (ESCC) have not been investigated so far. The aim of this study was to investigate the promoter methylation and expression of DACT family, in order to elucidate more information on the role of DACT with regard to the progression and prognosis of ESCC...
January 11, 2017: Journal of Biomedical Science
https://www.readbyqxmd.com/read/28077052/examinations-of-a-new-long-term-degradable-electrospun-polycaprolactone-scaffold-in-three-rat-abdominal-wall-models
#13
Hanna Jangö, Søren Gräs, Lise Christensen, Gunnar Lose
Alternative approaches to reinforce native tissue in reconstructive surgery for pelvic organ prolapse are warranted. Tissue engineering combines the use of a scaffold with the regenerative potential of stem cells and is a promising new concept in urogynecology. Our objective was to evaluate whether a newly developed long-term degradable polycaprolactone scaffold could provide biomechanical reinforcement and function as a scaffold for autologous muscle fiber fragments. We performed a study with three different rat abdominal wall models where the scaffold with or without muscle fiber fragments was placed (1) subcutaneously (minimal load), (2) in a partial defect (partial load), and (3) in a full-thickness defect (heavy load)...
January 1, 2017: Journal of Biomaterials Applications
https://www.readbyqxmd.com/read/28076994/adapted-dexamethasone-delivery-polyethylene-oxide-and-poly-%C3%A9-caprolactone-construct-promote-mesenchymal-stem-cells-chondrogenesis
#14
Armaghan Ghiaee, Faeze Pournaqi, Saeid Vakilian, Abdolah Mohammadi-Sangcheshmeh, Abdolreza Ardeshirylajimi
Issues associated with tissue transplantation and shortage of donors has always been a concern, whereas tissue engineering has provided the hopeful opportunities. The aim of this study was to investigate the chondrogenic differentiation potential of mesenchymal stem cells (MSCs) in the presence of embedded Dexamethasone into electrospun Poly(ethyleneoxide) nanofibers composited with Poly(ɛ-caprolactone) nanofibers. Electrospun-fabricated scaffolds were characterized by SEM, tensile, contact angle, release profile, MTT assay, and chonderogenic differentiation of stem cells...
January 12, 2017: Artificial Cells, Nanomedicine, and Biotechnology
https://www.readbyqxmd.com/read/28073305/human-amniotic-mesenchymal-stromal-cells-as-favourable-source-for-cartilage-repair
#15
Emma Muinos-López, Tamara Hermida-Gómez, Isaac Fuentes-Boquete, Francisco Javier de Toro-Santos, Francisco J Blanco, Silvia María Díaz-Prado
INTRODUCTION: Localized trauma-derived breakdown of the hyaline articular cartilage may progress towards osteoarthritis, a degenerative condition characterized by total loss of articular cartilage and joint function. Tissue engineering technologies encompass several promising approaches with high therapeutic potential for the treatment of these focal defects. However, most of the research in tissue engineering is focused on potential materials and structural cues, while little attention is directed to the most appropriate source of cells endowing these materials...
January 10, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28072423/nanotechnology-based-cryopreservation-of-cell-scaffold-constructs-a-new-breakthrough-to-clinical-application
#16
G Chen, Y Lv
  The developments of "off-the-shelf" cell-scaffold constructs received an increasing interest in tissue engineering and regenerative medicine. Although the direct cryopreservation of a single-cell suspension in the tube is a relative mature technology, the cryopreservation of cell-scaffold constructs remains a challenge. Nanotechnology shows tremendous potential for cryopreservation in regulating of freezing and thawing processes. For example, nanoparticles have been reported to modify the cryoprotective agent (CPA), adjust the process of cooling and warming cycles...
November 2016: Cryo Letters
https://www.readbyqxmd.com/read/28071988/braided-and-stacked-electrospun-nanofibrous-scaffolds-for-tendon-and-ligament-tissue-engineering
#17
Benjamin B Rothrauff, Brian B Lauro, Guang Yang, Richard E Debski, Volker Musahl, Rocky Tuan
Tendon and ligament injuries are a persistent orthopaedic challenge given their poor innate healing capacity. Non-woven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, non-woven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs - stacked or braided - were fabricated...
January 10, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28071739/sox10-adult-stem-cells-contribute-to-biomaterial-encapsulation-and-microvascularization
#18
Dong Wang, Aijun Wang, Fan Wu, Xuefeng Qiu, Ye Li, Julia Chu, Wen-Chin Huang, Kang Xu, Xiaohua Gong, Song Li
Implanted biomaterials and biomedical devices generally induce foreign body reaction and end up with encapsulation by a dense avascular fibrous layer enriched in extracellular matrix. Fibroblasts/myofibroblasts are thought to be the major cell type involved in encapsulation, but it is unclear whether and how stem cells contribute to this process. Here we show, for the first time, that Sox10(+) adult stem cells contribute to both encapsulation and microvessel formation. Sox10(+) adult stem cells were found sparsely in the stroma of subcutaneous loose connective tissues...
January 10, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28071596/3d-bioprinting-of-gelma-scaffolds-triggers-mineral-deposition-by-primary-human-osteoblasts
#19
Christine McBeth, Jasmin Lauer, Michael Ottersbach, Jennifer Campbell, Andre Sharon, Alexis F Sauer-Budge
Due to its relatively low level of antigenicity and high durability, titanium has successfully been used as the major material for biological implants. However, because the typical interface between titanium and tissue precludes adequate transmission of load into the surrounding bone, over time, load-bearing implants tend to loosen and revision surgeries are required. Osseointegration of titanium implants requires presentation of both biological and mechanical cues that promote attachment of and trigger mineral deposition by osteoblasts...
January 10, 2017: Biofabrication
https://www.readbyqxmd.com/read/28070774/restoring-fertility-with-cryopreserved-prepubertal-testicular-tissue-perspectives-with-hydrogel-encapsulation-nanotechnology-and-bioengineered-scaffolds
#20
Maxime Vermeulen, Jonathan Poels, Francesca de Michele, Anne des Rieux, Christine Wyns
New and improved oncological therapies are now able to cure more than 80% of cancer-affected children in Europe. However, such treatments are gonadotoxic and result in fertility issues, especially in boys who are not able to provide a sperm sample before starting chemo/radiotherapy because of their prepubertal state. For these boys, cryopreservation of immature testicular tissue (ITT) is the only available option, aiming to preserve spermatogonial stem cells (SSCs). Both slow-freezing and vitrification have been investigated to this end and are now applied in a clinical setting for SSC cryopreservation...
January 9, 2017: Annals of Biomedical Engineering
keyword
keyword
80512
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"