keyword
MENU ▼
Read by QxMD icon Read
search

Drosophila regeneration

keyword
https://www.readbyqxmd.com/read/28289209/injury-stimulated-and-self-restrained-bmp-signaling-dynamically-regulates-stem-cell-pool-size-during-drosophila-midgut-regeneration
#1
Aiguo Tian, Bing Wang, Jin Jiang
Many adult organs rely on resident stem cells to maintain homeostasis. Upon injury, stem cells increase proliferation, followed by lineage differentiation to replenish damaged cells. Whether stem cells also change division mode to transiently increase their population size as part of a regenerative program and, if so, what the underlying mechanism is have remained largely unexplored. Here we show that injury stimulates the production of two bone morphogenetic protein (BMP) ligands, Dpp and Gbb, which drive an expansion of intestinal stem cells (ISCs) by promoting their symmetric self-renewing division in Drosophila adult midgut...
March 13, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/28280861/a-growing-role-for-the-hippo-signaling-pathway-in-the-heart
#2
REVIEW
Yu Zhang, Dominic P Del Re
Heart disease is a major cause of clinical morbidity and mortality, and a significant health and economic burden worldwide. The loss of functional cardiomyocytes, often a result of myocardial infarction, leads to impaired cardiac output and ultimately heart failure. Therefore, efforts to improve cardiomyocyte viability and stimulate cardiomyocyte proliferation remain attractive therapeutic goals. Originally identified in Drosophila, the Hippo signaling pathway is highly conserved from flies to humans and regulates organ size through modulation of both cell survival and proliferation...
March 10, 2017: Journal of Molecular Medicine: Official Organ of the "Gesellschaft Deutscher Naturforscher und Ärzte"
https://www.readbyqxmd.com/read/28272390/atf3-acts-as-a-rheostat-to-control-jnk-signalling-during-intestinal-regeneration
#3
Jun Zhou, Bruce A Edgar, Michael Boutros
Epithelial barrier function is maintained by coordination of cell proliferation and cell loss, whereas barrier dysfunction can lead to disease and organismal death. JNK signalling is a conserved stress signalling pathway activated by bacterial infection and tissue damage, often leading to apoptotic cell death and compensatory cell proliferation. Here we show that the stress inducible transcription factor ATF3 restricts JNK activity in the Drosophila midgut. ATF3 regulates JNK-dependent apoptosis and regeneration through the transcriptional regulation of the JNK antagonist, Raw...
March 8, 2017: Nature Communications
https://www.readbyqxmd.com/read/28250735/glial-kon-ng2-gene-network-for-central-nervous-system-repair
#4
REVIEW
Maria Losada-Perez, Neale Harrison, Alicia Hidalgo
The glial regenerative response to central nervous system (CNS) injury, although limited, can be harnessed to promote regeneration and repair. Injury provokes the proliferation of ensheathing glial cells, which can differentiate to remyelinate axons, and partially restore function. This response is evolutionarily conserved, strongly implying an underlying genetic mechanism. In mammals, it is elicited by NG2 glia, but most often newly generated cells fail to differentiate. Thus an important goal had been to find out how to promote glial differentiation following the proliferative response...
January 2017: Neural Regeneration Research
https://www.readbyqxmd.com/read/28250202/atp-is-dispensable-for-both-mirna-and-smaug-mediated-deadenylation-reactions
#5
Sho Niinuma, Yukihide Tomari
microRNAs (miRNAs) as well as the RNA-binding protein Smaug recruit the CCR4-NOT deadenylase complex for shortening of the poly(A) tail. It has been believed that ATP is required for deadenylation induced by miRNAs or Smaug, based on the fact that the deadenylation reaction is blocked by ATP depletion. However, when isolated, neither of the two deadenylases in the CCR4-NOT complex requires ATP by themselves. Thus, it remains unknown why ATP is required for deadenylation by ribonucleoprotein complexes like miRNAs and Smaug...
March 1, 2017: RNA
https://www.readbyqxmd.com/read/28247346/characterization-of-drosophila-muscle-stem-cell-like-adult-muscle-precursors
#6
Guillaume Lavergne, Cedric Soler, Monika Zmojdzian, Krzysztof Jagla
Uncovering how muscle stem cells behave in quiescent and activated states is central to understand the basic rules governing normal muscle development and regeneration in pathological conditions. Specification of mesodermal lineages including muscle stemlike adult muscle precursors (AMPs) has been extensively studied in Drosophila providing an attractive framework for investigating muscle stem cell properties. Restricted number of AMP cells, relative ease in following their behavior, and large number of genetic tools available make fruit fly an attractive model system for studying muscle stem cells...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28246211/apoptosis-restores-cellular-density-by-eliminating-a-physiologically-or-genetically-induced-excess-of-enterocytes-in-the-drosophila-midgut
#7
Rihab Loudhaief, Alexandra Brun-Barale, Olivia Benguettat, Marie-Paule Nawrot-Esposito, David Pauron, Marcel Amichot, Armel Gallet
Using pathogens or high levels of opportunistic bacteria to damage the gut, studies in Drosophila have identified many signaling pathways involved in gut regeneration. Dying cells emit signaling molecules that accelerate intestinal stem cell proliferation and progenitor differentiation to replace the dying cells quickly. This process has been named 'regenerative cell death'. Here, mimicking environmental conditions, we show that the ingestion of low levels of opportunistic bacteria was sufficient to launch an accelerated cellular renewal program despite the brief passage of bacteria in the gut and the absence of cell death and this is is due to the moderate induction of the JNK pathway that stimulates stem cell proliferation...
March 1, 2017: Development
https://www.readbyqxmd.com/read/28218282/calcium-spikes-waves-and-oscillations-in-a-large-patterned-epithelial-tissue
#8
Ramya Balaji, Christina Bielmeier, Hartmann Harz, Jack Bates, Cornelia Stadler, Alexander Hildebrand, Anne-Kathrin Classen
While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells...
February 20, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28205638/effects-of-mir-146a-on-the-osteogenesis-of-adipose-derived-mesenchymal-stem-cells-and-bone-regeneration
#9
Qing Xie, Wei Wei, Jing Ruan, Yi Ding, Ai Zhuang, Xiaoping Bi, Hao Sun, Ping Gu, Zi Wang, Xianqun Fan
Increasing evidence has indicated that bone morphogenetic protein 2 (BMP2) coordinates with microRNAs (miRNAs) to form intracellular networks regulating mesenchymal stem cells (MSCs) osteogenesis. This study aimed to identify specific miRNAs in rat adipose-derived mesenchymal stem cells (ADSCs) during BMP2-induced osteogenesis, we selected the most significantly down-regulated miRNA, miR-146a, to systematically investigate its role in regulating osteogenesis and bone regeneration. Overexpressing miR-146a notably repressed ADSC osteogenesis, whereas knocking down miR-146a greatly promoted this process...
February 16, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28114410/a-gap-junction-protein-inx2-modulates-calcium-flux-to-specify-border-cell-fate-during-drosophila-oogenesis
#10
Aresh Sahu, Ritabrata Ghosh, Girish Deshpande, Mohit Prasad
Intercellular communication mediated by gap junction (GJ) proteins is indispensable during embryogenesis, tissue regeneration and wound healing. Here we report functional analysis of a gap junction protein, Innexin 2 (Inx2), in cell type specification during Drosophila oogenesis. Our data reveal a novel involvement of Inx2 in the specification of Border Cells (BCs), a migratory cell type, whose identity is determined by the cell autonomous STAT activity. We show that Inx2 influences BC fate specification by modulating STAT activity via Domeless receptor endocytosis...
January 2017: PLoS Genetics
https://www.readbyqxmd.com/read/28065655/precision-optogenetic-tool-for-selective-single-and-multiple-cell-ablation-in-a-live-animal-model-system
#11
Kalpana Makhijani, Tsz-Leung To, Rubén Ruiz-González, Céline Lafaye, Antoine Royant, Xiaokun Shu
Cell ablation is a strategy to study cell lineage and function during development. Optogenetic methods are an important cell-ablation approach, and we have previously developed a mini singlet oxygen generator (miniSOG) tool that works in the living Caenorhabditis elegans. Here, we use directed evolution to generate miniSOG2, an improved tool for cell ablation via photogenerated reactive oxygen species. We apply miniSOG2 to a far more complex model animal system, Drosophila melanogaster, and demonstrate that it can be used to kill a single neuron in a Drosophila larva...
January 19, 2017: Cell Chemical Biology
https://www.readbyqxmd.com/read/28057309/drosophila-melanogaster-as-a-model-of-muscle-degeneration-disorders
#12
R E Kreipke, Y V Kwon, H R Shcherbata, H Ruohola-Baker
Drosophila melanogaster provides a powerful platform with which researchers can dissect complex genetic questions and biochemical pathways relevant to a vast array of human diseases and disorders. Of particular interest, much work has been done with flies to elucidate the molecular mechanisms underlying muscle degeneration diseases. The fly is particularly useful for modeling muscle degeneration disorders because there are no identified satellite muscle cells to repair adult muscle following injury. This allows for the identification of endogenous processes of muscle degeneration as discrete events, distinguishable from phenotypes due to the lack of stem cell-based regeneration...
2017: Current Topics in Developmental Biology
https://www.readbyqxmd.com/read/28003126/emerging-role-of-hippo-signalling-in-pancreatic-biology-yap-re-expression-and-plausible-link-to-islet-cell-apoptosis-and-replication
#13
REVIEW
Anjana Sharma, Veera Ganesh Yerra, Ashutosh Kumar
Diabetes mellitus is an ailment that develops when the functional capacity of the pancreas does not meet the metabolic requirements of the whole body, either due to insulin insufficiency or resistance to insulin action. Current therapies that control glycaemia are limited by their unwanted effects or their inability to prevent the development of long-term complications. Regeneration and replacement of beta cell therapies are shaping the goals of future management of diabetes. The Hippo pathway, first discovered in Drosophila melanogaster, plays a vital role in controlling the organ size...
February 2017: Biochimie
https://www.readbyqxmd.com/read/28003097/hippo-signaling-in-the-liver-regulates-organ-size-cell-fate-and%C3%A2-carcinogenesis
#14
REVIEW
Sachin H Patel, Fernando D Camargo, Dean Yimlamai
The Hippo signaling pathway, also known as the Salvador-Warts-Hippo pathway, is a regulator of organ size. The pathway takes its name from the Drosophila protein kinase, Hippo (STK4/MST1 and STK3/MST2 in mammals), which, when inactivated, leads to considerable tissue overgrowth. In mammals, MST1 and MST2 negatively regulate the transcriptional co-activators yes-associated protein 1 and WW domain containing transcription regulator 1 (WWTR1/TAZ), which together regulate expression of genes that control proliferation, survival, and differentiation...
February 2017: Gastroenterology
https://www.readbyqxmd.com/read/27932297/dynamic-self-organisation-of-haematopoiesis-and-a-symmetric-cell-division
#15
Marthe Måløy, Frode Måløy, Per Jakobsen, Bjørn Olav Brandsdal
A model of haematopoiesis that links self-organisation with symmetric and asymmetric cell division is presented in this paper. It is assumed that all cell divisions are completely random events, and that the daughter cells resulting from symmetric and asymmetric stem cell divisions are, in general, phenotypically identical, and still, the haematopoietic system has the flexibility to self-renew, produce mature cells by differentiation, and regenerate undifferentiated and differentiated cells when necessary, due to self-organisation...
December 5, 2016: Journal of Theoretical Biology
https://www.readbyqxmd.com/read/27923046/mitochondria-and-caspases-tune-nmnat-mediated-stabilization-to-promote-axon-regeneration
#16
Li Chen, Derek M Nye, Michelle C Stone, Alexis T Weiner, Kyle W Gheres, Xin Xiong, Catherine A Collins, Melissa M Rolls
Axon injury can lead to several cell survival responses including increased stability and axon regeneration. Using an accessible Drosophila model system, we investigated the regulation of injury responses and their relationship. Axon injury stabilizes the rest of the cell, including the entire dendrite arbor. After axon injury we found mitochondrial fission in dendrites was upregulated, and that reducing fission increased stabilization or neuroprotection (NP). Thus axon injury seems to both turn on NP, but also dampen it by activating mitochondrial fission...
December 2016: PLoS Genetics
https://www.readbyqxmd.com/read/27920252/group-i-paks-promote-skeletal-myoblast-differentiation-in-vivo-and-in-vitro
#17
Giselle A Joseph, Min Lu, Maria Radu, Jennifer K Lee, Steven J Burden, Jonathan Chernoff, Robert S Krauss
Skeletal myogenesis is regulated by signal transduction, but the factors and mechanisms involved are not well understood. The group I Paks Pak1 and Pak2 are related protein kinases and direct effectors of Cdc42 and Rac1. Group I Paks are ubiquitously expressed and specifically required for myoblast fusion in Drosophila We report that both Pak1 and Pak2 are activated during mammalian myoblast differentiation. One pathway of activation is initiated by N-cadherin ligation and involves the cadherin coreceptor Cdo with its downstream effector, Cdc42...
February 15, 2017: Molecular and Cellular Biology
https://www.readbyqxmd.com/read/27916025/the-role-of-extracellular-biophysical-cues-in-modulating-the-hippo-yap-pathway
#18
Jung-Soon Mo
The Hippo signaling pathway plays an essential role in adult-tissue homeostasis and organ-size control. In Drosophila and vertebrates, it consists of a highly conserved kinase cascade, which involves MST and Lats that negatively regulate the activity of the downstream transcription coactivators, YAP and TAZ. By interacting with TEADs and other transcription factors, they mediate both proliferative and antiapoptotic gene expression and thus regulate tissue repair and regeneration. Dysregulation or mutation of the Hippo pathway is linked to tumorigenesis and cancer development...
February 2017: BMB Reports
https://www.readbyqxmd.com/read/27893747/analysis-of-the-function-of-apoptosis-during-imaginal-wing-disc-regeneration-in-drosophila-melanogaster
#19
Sandra Diaz-Garcia, Sara Ahmed, Antonio Baonza
Regeneration is the ability that allows organisms to replace missing organs or lost tissue after injuries. This ability requires the coordinated activity of different cellular processes, including programmed cell death. Apoptosis plays a key role as a source of signals necessary for regeneration in different organisms. The imaginal discs of Drosophila melanogaster provide a particularly well-characterised model system for studying the cellular and molecular mechanisms underlying regeneration. Although it has been shown that signals produced by apoptotic cells are needed for homeostasis and regeneration of some tissues of this organism, such as the adult midgut, the contribution of apoptosis to disc regeneration remains unclear...
2016: PloS One
https://www.readbyqxmd.com/read/27888240/topological-organisation-of-the-phosphatidylinositol-4-5-bisphosphate-phospholipase-c-resynthesis-cycle-pitps-bridge-the-er-pm-gap
#20
REVIEW
Shamshad Cockcroft, Padinjat Raghu
Phospholipase C (PLC) is a receptor-regulated enzyme that hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) triggering three biochemical consequences, the generation of soluble inositol 1,4,5-trisphosphate (IP3), membrane-associated diacylglycerol (DG) and the consumption of PM PI(4,5)P2 Each of these three signals triggers multiple molecular processes impacting key cellular properties. The activation of PLC also triggers a sequence of biochemical reactions, collectively referred to as the PI(4,5)P2 cycle that culminates in the resynthesis of this lipid...
December 1, 2016: Biochemical Journal
keyword
keyword
80284
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"