Read by QxMD icon Read

Glycine receptor

Zhengwei Wen, Qunying Jia, Xiaojuan Kang, Yongliang Lou, Lilin Zou, Jifeng Yang, Jimin Gao, Liping Han, Xiang Li
Interferon (IFN) regulates immune responses and antitumor activity. Arginine-glycine-aspartic acid (RGD) peptides can specifically bind to integrin αvβ3, a transmembrane receptor that is highly expressed on the surface of various cancer cells. In this study, we expressed recombinant RGD-IFN-α2a-core fusion proteins and assessed their antitumor activity in vitro. Two RGD-IFN-α2a-core fusion proteins and a negative control protein were expressed in vitro. These two RGD-IFN-α2a-core fusion proteins could bind the tumor cell surface specifically and did not bind to normal cells...
October 18, 2016: Anti-cancer Drugs
Mark J Millan, Jean-Michel Rivet, Alain Gobert
The highly-interconnected and neurochemically-rich frontal cortex plays a crucial role in the regulation of mood and cognition, domains disrupted in depression and other central nervous system disorders, and it is an important site of action for their therapeutic control. For improving our understanding of the function and dysfunction of the frontal cortex, and for identifying improved treatments, quantification of extracellular pools of neuromodulators by microdialysis in freely-moving rodents has proven indispensable...
October 17, 2016: Journal of Psychopharmacology
Marta Flis, Kinga Szymona, Justyna Morylowska-Topolska, Anna Urbańska, Paweł Krukow, Martyna Kandefer-Szerszeń, Barbara Zdzisińska, Ewa M Urbańska, Hanna Karakuła-Juchnowicz
Kynurenic acid (KYNA) is a neuroactive metabolite of tryptophan formed in the brain and in the periphery, known to block ionotropic glutamate receptors and α7 nicotinic receptors, and to act as a ligand of G protein-coupled GPR35 receptors and human aryl hydrocarbon (AHR) receptors. KYNA seems to modulate a number of mechanisms involved in the pathogenesis of schizophrenia including dopaminergic transmission in mesolimbic and mesocortical areas or glutamatemediated neurotransmission. The kynurenine hypothesis of schizophrenia links the occurrence of positive and negative symptoms of schizophrenia and cognitive impairments characteristic for the disease with the disturbances of kynurenine pathway function...
September 29, 2016: Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego
Jatin Machhi, Navnit Prajapati, Ashutosh Tripathi, Zalak S Parikh, Ashish M Kanhed, Kirti Patel, Prakash P Pillai, Rajani Giridhar, Mange Ram Yadav
Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells...
October 15, 2016: Molecular Neurobiology
Xuewen Jiang, Thomas W Fuller, Jathin Bandari, Utsav Bansal, Zhaocun Zhang, Bing Shen, Jicheng Wang, James R Roppolo, William C de Groat, Changfeng Tai
In α-chloralose anesthetized cats, we examined the role GABAA, glycine, and opioid receptors in sacral neuromodulation-induced inhibition of bladder overactivity elicited by intravesical infusion of 0.5% acetic acid (AA). AA irritation significantly (p<0.01) reduced bladder capacity to 59.5±4.8% of saline control. S1 or S2 dorsal root stimulation at threshold intensity for inducing reflex twitching of the anal sphincter or toe significantly (p<0.01) increased bladder capacity to 105.3±9.0% and 134...
October 11, 2016: Journal of Pharmacology and Experimental Therapeutics
Yuanfei Zhou, Jiao Ren, Tongxing Song, Jian Peng, Hongkui Wei
The mammalian target of rapamycin complex 1 (mTORC1) integrates amino acid (AA) availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R) is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca(2+) stimulation and extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1...
October 11, 2016: International Journal of Molecular Sciences
Chandran Murugan, Kathirvel Rayappan, Ramar Thangam, Ramasamy Bhanumathi, Krishnamurthy Shanthi, Raju Vivek, Ramasamy Thirumurugan, Atanu Bhattacharyya, Srinivasan Sivasubramanian, Palani Gunasekaran, Soundarapandian Kannan
Combination therapy of multiple drugs through a single system is exhibiting high therapeutic effects. We investigate nanocarrier mediated inhibitory effects of topotecan (TPT) and quercetin (QT) on triple negative breast cancer (TNBC) (MDA-MB-231) and multi drug resistant (MDR) type breast cancer cells (MCF-7) with respect to cellular uptake efficiency and therapeutic mechanisms as in vitro and in vivo. The synthesized mesoporous silica nanoparticle (MSN) pores used for loading TPT; the outer of the nanoparticles was decorated with poly (acrylic acid) (PAA)-Chitosan (CS) as anionic inner-cationic outer layer respectively and conjugated with QT...
October 11, 2016: Scientific Reports
Lifu Xiao, Zachary D Schultz
Membrane receptors play important roles in regulating cellular activities. Targeting membrane receptors in cancer cells and understanding their interactions with specific ligands are key for cancer prognosis and therapeutics. However, there is a need to develop new technologies to provide molecular insight into ligand-receptor binding chemistry in cell membrane. Integrin receptors are important membrane receptors that regulate cellular migration, invasion and proliferation in tumors. Integrins have a well-known affinity towards small peptide ligands containing arginine-glycine-aspartate (RGD) sequence and are therefore an attractive model system to study ligand-receptor interactions...
2016: Cancer Cell & Microenvironment
Junjie Fu, Amy Xia, Xin Qi
Drug development targeting fibroblast growth factor receptors (FGFRs) represents an emerging theme in the field of medicinal chemistry. Considering the fact that most of the currently identified FGFR agonists are long chain peptides with limited stability, the discovery of novel non-peptide FGFR ligands is still highly demanded. A linear one-bead-one-compound peptoid (oligomers of N-substituted glycine units) library with a theoretical diversity of 10(6) was designed and synthesized. Microarray-based screening led to the identification of four hit sequences 1-4 as FGFR1α ligands, which were further confirmed using both solution-phase and solid-phase binding assays...
2016: MedChemComm
Abhigyan Sengupta, Hsuan-Lei Sung, David J Nesbitt
In light of the current models for an early RNA-based universe, the potential influence of simple amino acids on tertiary folding of ribozymal RNA into biochemically competent structures is speculated to be of significant evolutionary importance. In the present work, the folding-unfolding kinetics of a ubiquitous tertiary interaction motif, the GAAA tetraloop-tetraloop receptor (TL-TLR), is investigated by single-molecule fluorescence resonance energy transfer spectroscopy in the presence of natural amino acids both with (e...
October 10, 2016: Journal of Physical Chemistry. B
Yan Zhang, Angelo Keramidas, Joseph W Lynch
Zn(2+) is concentrated into presynaptic vesicles at many central synapses and is released into the synaptic cleft by nerve terminal stimulation. There is strong evidence that synaptically released Zn(2+) modulates glutamatergic neurotransmission, although there is debate concerning the peak concentration it reaches in the synaptic cleft. Glycine receptors (GlyRs), which mediate inhibitory neurotransmission in the spinal cord and brainstem, are potentiated by low nanomolar Zn(2+) and inhibited by micromolar Zn(2+)...
2016: Frontiers in Molecular Neuroscience
Lisa M Greene, Seema M Nathwani, Daniela M Zisterer
T-cell acute lymphoblastic leukemia (T-ALL) is a rare and aggressive hematopoietic malignancy prone to relapse and drug resistance. Half of all T-ALL patients exhibit mutations in Notch1, which leads to aberrant Notch1 associated signaling cascades. Notch1 activation is mediated by the γ-secretase cleavage of the Notch1 receptor into the active intracellular domain of Notch1 (NCID). Clinical trials of γ-secretase small molecule inhibitors (GSIs) as single agents for the treatment of T-ALL have been unsuccessful...
October 2016: Oncology Letters
Rong Hu, Juan Chen, Brendan Lujan, Ruixue Lei, Mi Zhang, Zefen Wang, Mingxia Liao, Zhiqiang Li, Yu Wan, Fang Liu, Hua Feng, Qi Wan
Ionotropic activation of NMDA receptors (NMDARs) requires agonist glutamate and co-agonist glycine. Here we show that glycine enhances the activation of cell survival-promoting kinase Akt in cultured cortical neurons in which both the channel activity of NMDARs and the glycine receptors are pre-inhibited. The effect of glycine is reduced by shRNA-mediated knockdown of GluN2A subunit-containing NMDARs (GluN2ARs), suggesting that a non-ionotropic activity of GluN2ARs mediates glycine-induced Akt activation. In support of this finding, glycine enhances Akt activation in HEK293 cells over-expressing GluN2ARs...
October 3, 2016: Scientific Reports
Y Onetti, A P Dantas, B Pérez, A J McNeish, E Vila, F Jiménez-Altayó
AIM: Increased thromboxane A2 and peroxynitrite are hallmarks of cerebral ischaemia/reperfusion (I/R). Stimulation of thromboxane/prostaglandin receptors (TP) attenuates endothelium-derived hyperpolarization (EDH). We investigated whether EDH-type middle cerebral artery (MCA) relaxations following TP stimulation are altered after I/R and the influence of peroxynitrite. METHODS: Vascular function was determined by wire myography after TP stimulation with the thromboxane A2 mimetic 9,11-dideoxy-9α, 11α -methano-epoxy prostaglandin F2α (U46619) in MCA of Sprague Dawley rats subjected to MCA occlusion (90 min)/reperfusion (24 h) or sham operation, and in non-operated (control) rats...
September 28, 2016: Acta Physiologica
Vijay Kumar Saxena, Davendra Kumar, S M K Naqvi
GPR50, formerly known as a melatonin-related receptor, is one of the three subtypes of melatonin receptor subfamily, together with MTNR1A and MTNR1B. GPR50, despite its high identity with the melatonin receptor family, does not bind melatonin and is considered to be an ortholog of MTNR1C in mammals. GPR50-expressing cells have been found in the dorsomedial nucleus of the hypothalamus, the periventricular nucleus, and the median eminence. Genetic and functional evidence have been recently investigated linking GPR50 to adaptive thermogenesis and torpor, but still, it is an orphan receptor and is yet to be studied conclusively...
September 27, 2016: International Journal of Biometeorology
Christina Li, Alexander Goryaynov, Weidong Yang
The nuclear pore complex (NPC) mediates the shuttle transport of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The permeability barrier formed by intrinsically disordered phenylalanine-glycine-rich nucleoporins (FG-Nups) in the NPC functions as the critical selective control for nucleocytoplasmic transport. Signal-independent small molecules (< 40 kDa) passively diffuse through the pore, but passage of large cargo molecules is inhibited unless they are chaperoned by nuclear transport receptors (NTRs)...
September 27, 2016: Nucleus
Lahong Zhang, Zhaojun Chen, Dan Xue, Qi Zhang, Xiyong Liu, Frank Luh, Liquan Hong, Hang Zhang, Feng Pan, Yuhua Liu, Peiguo Chu, Shu Zheng, Guoqiang Lou, Yun Yen
Mitochondrial serine hydroxylmethyltransferase 2 (SHMT2) is a key enzyme in the serine/glycine synthesis pathway. SHMT2 has been implicated as a critical component for tumor cell survival. The aim of the present study was to evaluate the prognostic value and efficiency of SHMT2 as a biomarker in patients with breast cancer. Individual and pooled survival analyses were performed on five independent breast cancer microarray datasets. Gene signatures enriched by SHMT2 were also analyzed in these datasets. SHMT2 protein expression was detected using immunohistochemistry (IHC) assay in 128 breast cancer cases...
September 20, 2016: Oncology Reports
J V Bukanova, I N Sharonova, V G Skrebitsky
Amyloid-β peptide (Aβ) is considered a key protein in the pathogenesis of Alzheimer's disease because of its neurotoxicity, resulting in impaired synaptic function and memory. On the other hand, it was demonstrated that low (picomolar) concentrations of Aβ enhance synaptic plasticity and memory, suggesting that in the healthy brain, physiological Aβ concentrations are necessary for normal cognitive functions. In the present study, we found that Aβ (1-42) in concentrations of 10 pМ - 100 nМ enhanced desensitization of the glycine-activated current in isolated CA3 pyramidal neurons and also reversibly suppressed its peak amplitude during short (600 ms) co-application with agonist...
September 20, 2016: Brain Research
S Y Yau, C A Bostrom, J Chiu, C J Fontaine, S Sawchuk, A Meconi, R C Wortman, E Truesdell, A Truesdell, C Chiu, B N Hryciw, B D Eadie, M Ghilan, B R Christie
Fragile-X syndrome (FXS) is caused by the transcriptional repression of the Fmr1 gene resulting in loss of the Fragile-X mental retardation protein (FMRP). This leads to cognitive impairment in both male and female patients, however few studies have focused on the impact of FXS in females. Significant cognitive impairment has been reported in approximately 35% of women who exhibit a heterozygous Fmr1 gene mutation, however to date there is a paucity of information regarding the mechanistic underpinnings of these deficits...
September 19, 2016: Neurobiology of Disease
Aurèle Besse-Patin, Mélissa Léveillé, Daniel Oropeza, Bich N Nguyen, Annick Prat, Jennifer L Estall
BACKGROUND & AIMS: Inefficient fatty acid oxidation in mitochondria and increased oxidative damage are features of non-alcoholic fatty liver disease (NAFLD). In rodent models and patients with NAFLD, hepatic expression of PPARG coactivator 1 alpha (PPARGC1A or PGC1A) is inversely correlated with liver fat and disease severity. A common polymorphism in this gene (rs8192678, encoding Gly482Ser) has been associated with NAFLD. We investigated whether reduced expression of PGC1A contributes to development of NAFLD using mouse models, primary hepatocytes and human cell lines...
September 19, 2016: Gastroenterology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"