Read by QxMD icon Read

gene circuit

Xiaowei Wu, Shang Zheng, Yuanzhou Ye, Yuchen Wu, Kaili Lin, Jiansheng Su
The reconstruction of bone defects by guiding autologous bone tissue regeneration with artificial biomaterials is a potential strategy in the area of bone tissue engineering. The development of new polymers with good biocompatibility, favorable mechanical properties, and osteoinductivity is of vital importance. Graphene and its derivatives have attracted extensive interests due to the exceptional physiochemical and biological properties of graphene. In this study, poly(lactic-co-glycolic acid) (PLGA) films incorporated by graphene nanoplates were fabricated...
March 21, 2018: Biomaterials Science
Ljiljana Progovac, Natalia Rakhlin, William Angell, Ryan Liddane, Lingfei Tang, Noa Ofen
We address the puzzle of "unity in diversity" in human languages by advocating the (minimal) common denominator for the diverse expressions of transitivity across human languages, consistent with the view that early in language evolution there was a modest beginning for syntax and that this beginning provided the foundation for the further elaboration of syntactic complexity. This study reports the results of a functional MRI experiment investigating differential patterns of brain activation during processing of sentences with minimal versus fuller syntactic structures...
2018: Frontiers in Psychology
Yun-Ting Su, Meng-Yang Gu, Xi Chu, Xiang Feng, Yan-Qin Yu
The GABAergic neurons in the parafacial zone (PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediating this function remain poorly characterized. Here, we performed whole-brain mapping of both the inputs and outputs of the GABAergic neurons in the PZ of the mouse brain. We used the modified rabies virus EnvA-ΔG-DsRed combined with a Cre/loxP gene-expression strategy to map the direct monosynaptic inputs to the GABAergic neurons in the PZ, and found that they receive inputs mainly from the hypothalamic area, zona incerta, and parasubthalamic nucleus in the hypothalamus; the substantia nigra, pars reticulata and deep mesencephalic nucleus in the midbrain; and the intermediate reticular nucleus and medial vestibular nucleus (parvocellular part) in the pons and medulla...
March 20, 2018: Neuroscience Bulletin
Cheong-Yong Yun, Seon Mi Ko, Yong Pyo Choi, Beom Joon Kim, Jungno Lee, Jae Mun Kim, Ju Yeon Kim, Jin Yong Song, Song-Hee Kim, Bang Yeon Hwang, Jin Tae Hong, Sang-Bae Han, Youngsoo Kim
Rationale: cAMP up-regulates microphthalmia-associated transcription factor subtype M (MITF-M) and tyrosinase (Tyro) in the generation of heavily pigmented melanosomes. Here, we communicate a therapeutic mechanism of hyperpigmented disorder by α-viniferin, an active constituent of Caragana sinica . Methods: We used cAMP-elevated melanocyte cultures or facial hyperpigmented patches for pigmentation assays, and applied immunoprecipitation, immunobloting, RT-PCR or reporter gene for elucidation of the antimelanogenic mechanism...
2018: Theranostics
Artemis Gogos, Juan Cristobal Jimenez, Jennifer C Chang, Reid V Wilkening, Michael J Federle
The Rgg2/3 quorum sensing (QS) system is conserved among all sequenced isolates of Group A Streptococcus (GAS, Streptococcus pyogenes ). The molecular architecture of the system consists of a transcriptional activator (Rgg2) and a transcriptional repressor (Rgg3) under the control of autoinducing peptide pheromones (SHP2 and SHP3). Activation of the Rgg2/3 pathway leads to increases in biofilm formation and resistance to the bactericidal effects of the host factor, lysozyme. In this work, we show that deletion of a small gene, Spy49_0414c , abolished both phenotypes in response to pheromone signaling...
March 19, 2018: Journal of Bacteriology
Mitchell S Weisenberger, Tara L Deans
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior...
March 19, 2018: Journal of Industrial Microbiology & Biotechnology
Erqing Jin, Lynn Wong, Yun Jiao, Jake Engel, Benjamin Holdridge, Peng Xu
Engineering cell factories for producing biofuels and pharmaceuticals has spurred great interests to develop rapid and efficient synthetic biology tools customized for modular pathway engineering. Along the way, combinatorial gene expression control through modification of regulatory element offered tremendous opportunity for fine-tuning gene expression and generating digital-like genetic circuits. In this report, we present an efficient evolutionary approach to build a range of regulatory control elements...
December 2017: Synthetic and Systems Biotechnology
Daniel Pensold, Geraldine Zimmer
The correct establishment of inhibitory circuits is crucial for cortical functionality and defects during the development of γ-aminobutyric acid-expressing cortical interneurons contribute to the pathophysiology of psychiatric disorders. A critical developmental step is the migration of cortical interneurons from their site of origin within the subpallium to the cerebral cortex, orchestrated by intrinsic and extrinsic signals. In addition to genetic networks, epigenetic mechanisms such as DNA methylation by DNA methyltransferases (DNMTs) are suggested to drive stage-specific gene expression underlying developmental processes...
2018: Journal of Experimental Neuroscience
Seaim Lwin Aye, Kei Fujiwara, Asuka Ueki, Nobuhide Doi
Although compartmentalized self-replication (CSR) and compartmentalized partnered replication (CPR) are powerful tools for directed evolution of proteins and gene circuits, limitations remain in the emulsion PCR process with the wild-type Taq DNA polymerase used so far, including long run times, low amounts of product, and false negative results due to inhibitors. In this study, we developed a high-efficiency mutant of DNA polymerase I from Thermus thermophilus HB27 (Tth pol) suited for CSR and CPR. We modified the wild-type Tth pol by (i) deletion of the N-terminal 5' to 3' exonuclease domain, (ii) fusion with the DNA-binding protein Sso7d, (iii) introduction of four known effective point mutations from other DNA polymerase mutants, and (iv) codon optimization to reduce the GC content...
March 14, 2018: Biochemical and Biophysical Research Communications
Carlos Fernández-Hernando, Yajaira Suárez
PURPOSE OF REVIEW: Since the first discovery of microRNAs (miRNAs) in 1993, the involvement of miRNAs in different aspects of vascular disease has emerged as an important research field. In this review, we summarize the fundamental roles of miRNAs in controlling endothelial cell functions and their implication with several aspects of vascular dysfunction. RECENT FINDINGS: MiRNAs have been found to be critical modulators of endothelial homeostasis. The dysregulation of miRNAs has been linked to endothelial dysfunction and the development and progression of vascular disease which and open new opportunities of using miRNAs as potential therapeutic targets for vascular disease...
March 14, 2018: Current Opinion in Hematology
Caleb J Bashor, James J Collins
Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function...
March 16, 2018: Annual Review of Biophysics
Daniel J Dennis, Sisu Han, Carol Schuurmans
The formation of functional neural circuits in the vertebrate central nervous system (CNS) requires that appropriate numbers of the correct types of neuronal and glial cells are generated in their proper places and times during development. In the embryonic CNS, multipotent progenitor cells first acquire regional identities, and then undergo precisely choreographed temporal identity transitions (i.e. time-dependent changes in their identity) that determine how many neuronal and glial cells of each type they will generate...
March 12, 2018: Brain Research
Guo Zhang, Wang-Ding Yuan, Ferdinand S Vilim, Elena V Romanova, Ke Yu, Si-Yuan Yin, Zi-Wei Le, Ying-Yu Xue, Ting-Ting Chen, Guo-Kai Chen, Song-An Chen, Elizabeth C Cropper, Jonathan V Sweedler, Klaudiusz R Weiss, Jian Jing
When individual neurons in a circuit contain multiple neuropeptides, these peptides can target different sets of follower neurons. This endows the circuit with a certain degree of flexibility. Here we identified a novel family of peptides, the Aplysia SPTR-Gene Family-Derived peptides (apSPTR-GF-DPs). We demonstrated apSPTR-GF-DPs, particularly apSPTR-GF-DP2, are expressed in the Aplysia CNS using immunohistochemistry and MALDI-TOF MS. apSPTR-GF-DP2 is present in single projection neurons, e.g., in the cerebral-buccal interneuron-12 (CBI-12)...
March 15, 2018: ACS Chemical Neuroscience
Zachary Niday, Anastasios V Tzingounis
Exome and targeted sequencing have revolutionized clinical diagnosis. This has been particularly striking in epilepsy and neurodevelopmental disorders, for which new genes or new variants of preexisting candidate genes are being continuously identified at increasing rates every year. A surprising finding of these efforts is the recognition that gain of function potassium channel variants are actually associated with certain types of epilepsy, such as malignant migrating partial seizures of infancy or early-onset epileptic encephalopathy...
March 1, 2018: Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry
Jacque P K Ip, Ikue Nagakura, Jeremy Petravicz, Keji Li, Erik A C Wiemer, Mriganka Sur
Microdeletion of a region in chromosome 16p11.2 increases susceptibility to autism. Although this region contains exons of 29 genes, disrupting only a small segment of the region, which spans 5 genes, is sufficient to cause autistic traits. One candidate gene in this critical segment is MVP , which encodes for the major vault protein (MVP) that has been implicated in regulation of cellular transport mechanisms. MVP expression levels in MVP +/- mice closely phenocopy those of 16p11.2 mutant mice, suggesting that MVP +/- mice may serve as a model of MVP function in 16p11...
March 14, 2018: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
John J Marshall, Jian Xu, Anis Contractor
Kainate receptors are members of the glutamate receptor family that function both by generating ionotropic currents through an integral ion channel pore, and through coupling to downstream metabotropic signaling pathways. They are highly expressed in the striatum yet their roles in regulating striatal synapses are not known. Using mice of both sexes we demonstrate that GluK2 containing kainate receptors expressed in direct pathway Spiny Projection Neurons (dSPNs) inhibit glutamate release at corticostriatal synapses in the dorsolateral striatum...
March 14, 2018: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Mary E Orczykowski, Kevin R Arndt, Lauren E Palitz, Brian C Kramer, Monica A Pessina, Adrian L Oblak, Seth P Finklestein, Farzad Mortazavi, Douglas L Rosene, Tara L Moore
Stroke results in enduring damage to the brain which is accompanied by innate neurorestorative processes, such as reorganization of surviving circuits. Nevertheless, patients are often left with permanent residual impairments. Cell based therapy is an emerging therapeutic that may function to enhance the innate neurorestorative capacity of the brain. We previously evaluated human umbilical tissue-derived cells (hUTC) in our non-human primate model of cortical injury limited to the hand area of primary motor cortex...
March 11, 2018: Experimental Neurology
Suijuan Zhong, Shu Zhang, Xiaoying Fan, Qian Wu, Liying Yan, Ji Dong, Haofeng Zhang, Long Li, Le Sun, Na Pan, Xiaohui Xu, Fuchou Tang, Jun Zhang, Jie Qiao, Xiaoqun Wang
The mammalian prefrontal cortex comprises a set of highly specialized brain areas containing billions of cells and serves as the centre of the highest-order cognitive functions, such as memory, cognitive ability, decision-making and social behaviour. Although neural circuits are formed in the late stages of human embryonic development and even after birth, diverse classes of functional cells are generated and migrate to the appropriate locations earlier in development. Dysfunction of the prefrontal cortex contributes to cognitive deficits and the majority of neurodevelopmental disorders; there is therefore a need for detailed knowledge of the development of the prefrontal cortex...
March 14, 2018: Nature
Eva Nüsken, Jörg Dötsch, Lutz T Weber, Kai-Dietrich Nüsken
Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life...
2018: Frontiers in Pediatrics
Huicong Yan, Meizhen Wang, Feng Sun, Ajai A Dandekar, Dongsheng Shen, Na Li
Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the production of public goods such as the secreted protease elastase. P. aeruginosa requires the LasI-LasR QS circuit to induce elastase and enable growth on casein as the sole carbon and energy source. The LasI-LasR system also induces a second QS circuit, the RhlI-RhlR system. During growth on casein, LasR-mutant social cheaters emerge, and this can lead to a population collapse. In a minimal medium containing ammonium sulfate as a nitrogen source, populations do not collapse, and cheaters and cooperators reach a stable equilibrium; however, without ammonium sulfate, cheaters overtake the cooperators and populations collapse...
2018: Frontiers in Microbiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"