Read by QxMD icon Read


Sean L Beckwith, Erin K Schwartz, Pablo E Garcia-Nieto, Devin A King, Graeme J Gowans, Ka Man Wong, Tessa L Eckley, Alexander P Paraschuk, Egan L Peltan, Laura R Lee, Wei Yao, Ashby J Morrison
Chromatin remodeling complexes are essential for gene expression programs that coordinate cell function with metabolic status. However, how these remodelers are integrated in metabolic stability pathways is not well known. Here, we report an expansive genetic screen with chromatin remodelers and metabolic regulators in Saccharomyces cerevisiae. We found that, unlike the SWR1 remodeler, the INO80 chromatin remodeling complex is composed of multiple distinct functional subunit modules. We identified a strikingly divergent genetic signature for the Ies6 subunit module that links the INO80 complex to metabolic homeostasis...
February 20, 2018: PLoS Genetics
Coral Y Zhou, Stephanie L Johnson, Laura J Lee, Adam D Longhurst, Sean L Beckwith, Matthew J Johnson, Ashby J Morrison, Geeta J Narlikar
The yeast INO80 chromatin remodeling complex plays essential roles in regulating DNA damage repair, replication, and promoter architecture. INO80's role in these processes is likely related to its ability to slide nucleosomes, but the underlying mechanism is poorly understood. Here we use ensemble and single-molecule enzymology to study INO80-catalyzed nucleosome sliding. We find that the rate of nucleosome sliding by INO80 increases ∼100-fold when the flanking DNA length is increased from 40 to 60 bp. Furthermore, once sliding is initiated, INO80 moves the nucleosome rapidly at least 20 bp without pausing to re-assess flanking DNA length, and it can change the direction of nucleosome sliding without dissociation...
February 15, 2018: Molecular Cell
John S Runge, Jesse R Raab, Terry Magnuson
Chromatin remodeling and histone modifying enzymes play a critical role in shaping the regulatory output of a cell. Although much is known about these classes of proteins, identifying the mechanisms by which they coordinate gene expression programs remains an exciting topic of investigation. One factor that may contribute to the targeting and activity of chromatin regulators is local chromatin landscape. We leveraged genomic approaches and publically-available datasets to characterize the chromatin landscape at targets of the human INO80 chromatin remodeling complex (INO80-C)...
February 5, 2018: G3: Genes—Genomes—Genetics
Shin-Ai Lee, Han-Sae Lee, Shin-Kyoung Hur, Sang Won Kang, Goo Taeg Oh, Daekee Lee, Jongbum Kwon
The INO80 chromatin-remodeling complex performs functions in many chromosomal processes that are crucial for genome stability, such as DNA replication and stalled replication fork recovery. Although these functions suggest that INO80 acts as a tumor suppressor, its specific role in tumorigenesis has remained obscure. Here, we show that a haploinsufficient mutation of Ino80, the catalytic ATPase of the INO80 complex, decreased intestinal adenomatous polyps and increased survival in an Apcmin/+ mouse model of colon cancer...
December 29, 2017: Oncotarget
M Yu Mazina, P K Derevyanko, E V Kocheryzhkina, Yu V Nikolenko, A N Krasnov, N E Vorobyeva
The objective of this study was to identify transcriptional coactivators participating in transcription elongation of the hsp70 gene induced by heat shock. We found that all investigated coactivator complexes participate in transcription of this gene, as significant level of them were present at the gene promoter in its active state. For most of the coactivators (except for p300/CBP, Set2, and Mediator complex), we also observed a considerable increase of their binding level at the coding region of the gene after activation of its transcription by heat shock...
February 2017: Genetika
Siyeon Rhee, Jae I Chung, Devin A King, Gaetano D'amato, David T Paik, Anna Duan, Andrew Chang, Danielle Nagelberg, Bikram Sharma, Youngtae Jeong, Maximilian Diehn, Joseph C Wu, Ashby J Morrison, Kristy Red-Horse
During development, the formation of a mature, well-functioning heart requires transformation of the ventricular wall from a loose trabecular network into a dense compact myocardium at mid-gestation. Failure to compact is associated in humans with congenital diseases such as left ventricular non-compaction (LVNC). The mechanisms regulating myocardial compaction are however still poorly understood. Here, we show that deletion of the Ino80 chromatin remodeler in vascular endothelial cells prevents ventricular compaction in the developing mouse heart...
January 25, 2018: Nature Communications
Graeme J Gowans, Alicia N Schep, Ka Man Wong, Devin A King, William J Greenleaf, Ashby J Morrison
Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC). Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression...
January 16, 2018: Cell Reports
Ricardo J Aramayo, Oliver Willhoft, Rafael Ayala, Rohan Bythell-Douglas, Dale B Wigley, Xiaodong Zhang
Access to chromatin for processes such as transcription and DNA repair requires the sliding of nucleosomes along DNA. This process is aided by chromatin-remodeling complexes, such as the multisubunit INO80 chromatin-remodeling complex. Here we present cryo-EM structures of the active core complex of human INO80 at 9.6 Å, with portions at 4.1-Å resolution, and reconstructions of combinations of subunits. Together, these structures reveal the architecture of the INO80 complex, including Ino80 and actin-related proteins, which is assembled around a single RUVBL1 (Tip49a) and RUVBL2 (Tip49b) AAA+ heterohexamer...
January 2018: Nature Structural & Molecular Biology
Stefanie A H de Poot, Geng Tian, Daniel Finley
Three deubiquitinating enzymes-Rpn11, Usp14, and Uch37-are associated with the proteasome regulatory particle. These enzymes allow proteasomes to remove ubiquitin from substrates before they are translocated into the core particle to be degraded. Although the translocation channel is too narrow for folded proteins, the force of translocation unfolds them mechanically. As translocation proceeds, ubiquitin chains bound to substrate are drawn to the channel's entry port, where they can impede further translocation...
November 10, 2017: Journal of Molecular Biology
Eun Shik Choi, Youngseo Cheon, Keunsoo Kang, Daeyoup Lee
The centromere is the chromosomal locus at which the kinetochore is assembled to direct chromosome segregation. The histone H3 variant, centromere protein A (CENP-A), is known to epigenetically mark active centromeres, but the mechanism by which CENP-A propagates at the centromere, replacing histone H3, remains poorly understood. Using fission yeast, here we show that the Ino80 adenosine triphosphate (ATP)-dependent chromatin-remodeling complex, which removes histone H3-containing nucleosomes from associated chromatin, promotes CENP-ACnp1 chromatin assembly at the centromere in a redundant manner with another chromatin-remodeling factor Chd1Hrp1 ...
September 13, 2017: Nature Communications
Yu-Qian Mao, Walid A Houry
Pontin (RUVBL1, TIP49, TIP49a, Rvb1) and Reptin (RUVBL2, TIP48, TIP49b, Rvb2) are highly conserved ATPases of the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various cellular processes that are important for oncogenesis. First identified as being upregulated in hepatocellular carcinoma and colorectal cancer, their overexpression has since been shown in multiple cancer types such as breast, lung, gastric, esophageal, pancreatic, kidney, bladder as well as lymphatic, and leukemic cancers...
2017: Frontiers in Molecular Biosciences
Yong Xue, Suman K Pradhan, Fei Sun, Constantinos Chronis, Nancy Tran, Trent Su, Christopher Van, Ajay Vashisht, James Wohlschlegel, Craig L Peterson, H T Marc Timmers, Siavash K Kurdistani, Michael F Carey
Pervasive transcription initiates from cryptic promoters and is observed in eukaryotes ranging from yeast to mammals. The Set2-Rpd3 regulatory system prevents cryptic promoter function within expressed genes. However, conserved systems that control pervasive transcription within intergenic regions have not been well established. Here we show that Mot1, Ino80 chromatin remodeling complex (Ino80C), and NC2 co-localize on chromatin and coordinately suppress pervasive transcription in S. cerevisiae and murine embryonic stem cells (mESCs)...
August 17, 2017: Molecular Cell
David M Rees, Oliver Willhoft, Chia-Liang Lin, Rohan Bythell-Douglas, Dale B Wigley
We have developed a novel system to facilitate the rapid and easy cloning of multiple genes (>10) in under a week. Using this system we have been able to successfully clone, overexpress, and purify a number of large multimeric proteins from insect cells, including the chromatin remodeling complexes SWR1 and INO80. Using Förster resonance energy transfer (FRET)-based assays we have demonstrated that our overexpressed enzymes have activities comparable to those purified from sources where the proteins are expressed under their endogenous promoters...
2017: Methods in Enzymology
Sandipan Brahma, Maheshi I Udugama, Jongseong Kim, Arjan Hada, Saurabh K Bhardwaj, Solomon G Hailu, Tae-Hee Lee, Blaine Bartholomew
ATP-dependent chromatin remodellers modulate nucleosome dynamics by mobilizing or disassembling nucleosomes, as well as altering nucleosome composition. These chromatin remodellers generally function by translocating along nucleosomal DNA at the H3-H4 interface of nucleosomes. Here we show that, unlike other remodellers, INO80 translocates along DNA at the H2A-H2B interface of nucleosomes and persistently displaces DNA from the surface of H2A-H2B. DNA translocation and DNA torsional strain created near the entry site of nucleosomes by INO80 promotes both the mobilization of nucleosomes and the selective exchange of H2A...
June 12, 2017: Nature Communications
Coral Y Zhou, Caitlin I Stoddard, Jonathan B Johnston, Michael J Trnka, Ignacia Echeverria, Eugene Palovcak, Andrej Sali, Alma L Burlingame, Yifan Cheng, Geeta J Narlikar
The hexameric AAA+ ATPases Rvb1 and Rvb2 (Rvbs) are essential for diverse processes ranging from metabolic signaling to chromatin remodeling, but their functions are unknown. While originally thought to act as helicases, recent proposals suggest that Rvbs act as protein assembly chaperones. However, experimental evidence for chaperone-like behavior is lacking. Here, we identify a potent protein activator of the Rvbs, a domain in the Ino80 ATPase subunit of the INO80 chromatin-remodeling complex, termed Ino80INS...
June 6, 2017: Cell Reports
Oliver Willhoft, Elizabeth A McCormack, Ricardo J Aramayo, Rohan Bythell-Douglas, Lorraine Ocloo, Xiaodong Zhang, Dale B Wigley
Several chromatin remodellers have the ability to space nucleosomes on DNA. For ISWI remodellers, this involves an interplay between H4 histone tails, the AutoN and NegC motifs of the motor domains that together regulate ATPase activity and sense the length of DNA flanking the nucleosome. By contrast, the INO80 complex also spaces nucleosomes but is not regulated by H4 tails and lacks the AutoN and NegC motifs. Instead nucleosome sliding requires cooperativity between two INO80 complexes that monitor DNA length simultaneously on either side of the nucleosome during sliding...
June 6, 2017: ELife
Claudio A Lademann, Jörg Renkawitz, Boris Pfander, Stefan Jentsch
The INO80 complex (INO80-C) is an evolutionarily conserved nucleosome remodeler that acts in transcription, replication, and genome stability. It is required for resistance against genotoxic agents and is involved in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). However, the causes of the HR defect in INO80-C mutant cells are controversial. Here, we unite previous findings using a system to study HR with high spatial resolution in budding yeast. We find that INO80-C has at least two distinct functions during HR-DNA end resection and presynaptic filament formation...
May 16, 2017: Cell Reports
Kexin Gai, Xuemei Cao, Qing Dong, Zhaolan Ding, Yashang Wei, Yingchun Liu, Xiao Liu, Qun He
Rhythmic activation and repression of the frequency (frq) gene are essential for normal function of the Neurospora circadian clock. WHITE COLLAR (WC) complex, the positive element of the Neurospora circadian system, is responsible for stimulation of frq transcription. We report that a C2H2 finger domain-containing protein IEC-1 and its associated chromatin remodeling complex INO80 play important roles in normal Neurospora circadian clock function. In iec-1KO strains, circadian rhythms are abolished, and the frq transcript levels are increased compared to that of the wild-type strain...
April 2017: PLoS Genetics
Shalaka Chitale, Holger Richly
Repair of damaged DNA relies on the recruitment of DNA repair factors in a well orchestrated manner. As a prerequisite, the chromatin needs to be decondensed by chromatin remodelers to allow for binding of repair factors and for DNA repair to occur. Recent studies have implicated members of the SWI/SNF and INO80 families as well as PARP1 in nucleotide excision repair (NER). In this study, we report that the endonuclease DICER is implicated in chromatin decondensation during NER. In response to UV irradiation, DICER is recruited to chromatin in a ZRF1-mediated manner...
June 2, 2017: Nucleic Acids Research
Brigitta Omazic, Burcu Ayoglu, Matthias Löhr, Ralf Segersvärd, Caroline Verbeke, Isabelle Magalhaes, Zuzana Potacova, Jonas Mattsson, Alexei Terman, Sam Ghazi, Nils Albiin, Nikolaos Kartalis, Peter Nilsson, Thomas Poiret, Liu Zhenjiang, Rainer Heuchel, Jochen M Schwenk, Johan Permert, Markus J Maeurer, Olle Ringden
We examined the immunologic effects of allogeneic hematopoietic stem cell transplantation (HSCT) in the treatment of pancreatic ductal adenocarcinoma, a deadly disease with a median survival of 24 months for resected tumors and a 5-year survival rate of 6%. After adjuvant chemotherapy, 2 patients with resected pancreatic ductal adenocarcinoma underwent HSCT with HLA-identical sibling donors. Comparable patients who underwent radical surgery, but did not have a donor, served as controls (n=6). Both patients developed humoral and cellular (ie, HLA-A*01:01-restricted) immune responses directed against 2 novel tumor-associated antigens (TAAs), INO80E and UCLH3 after HSCT...
March 23, 2017: Journal of Immunotherapy
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"