Read by QxMD icon Read

transcription elongation

Chia-Feng Liu, William E Samsa, Guang Zhou, Véronique Lefebvre
A milestone in the evolutionary emergence of vertebrates was the invention of cartilage, a tissue that has key roles in modeling, protecting and complementing the bony skeleton. Cartilage is elaborated and maintained by chondrocytes. These cells derive from multipotent skeletal progenitors and they perform highly specialized functions as they proceed through sequential lineage commitment and differentiation steps. They form cartilage primordia, the primary skeleton of the embryo. They then transform these primordia either into cartilage growth plates, temporary drivers of skeletal elongation and endochondral ossification, or into permanent tissues, namely articular cartilage...
October 19, 2016: Seminars in Cell & Developmental Biology
Nina Xie, He Gong, Joshua A Suhl, Pankaj Chopra, Tao Wang, Stephen T Warren
Fragile X syndrome (FXS) is a common cause of intellectual disability that is most often due to a CGG-repeat expansion mutation in the FMR1 gene that triggers epigenetic gene silencing. Epigenetic modifying drugs can only transiently and modestly induce FMR1 reactivation in the presence of the elongated CGG repeat. As a proof-of-principle, we excised the expanded CGG-repeat in both somatic cell hybrids containing the human fragile X chromosome and human FXS iPS cells using the CRISPR/Cas9 genome editing. We observed transcriptional reactivation in approximately 67% of the CRISPR cut hybrid colonies and in 20% of isolated human FXS iPSC colonies...
2016: PloS One
Tobias Wiedemann, Stefan Hofbaur, Eva Loell, Gabriele Rieder
Interleukin-8 (IL-8) is a potent neutrophil-activating chemokine which triggers the infiltration and migration of neutrophils into areas of bacterial infection. Helicobacter pylori-infected patient studies as well as animal models have revealed that H. pylori type I strains carrying an intact cytotoxin-associated gene pathogenicity island (cag-PAI) with a functional type IV secretion system (T4SS) induce IL-8 expression and secretion in gastric mucosa. This gastric mucosal IL-8 expression correlates with severe histological changes due to H...
September 29, 2016: European Journal of Microbiology & Immunology
Alberto Campanaro, Raffaella Battaglia, Massimo Galbiati, Ari Sadanandom, Chiara Tonelli, Lucio Conti
SUMOylation and anther growth. During fertilization, stamen elongation needs to be synchronized with pistil growth. The phytohormone gibberellic acid (GA) promotes stamen growth by stimulating the degradation of growth repressing DELLA proteins. DELLA accumulation is negatively regulated by GAs through the ubiquitin-proteasome system. In Arabidopsis thaliana, a proportion of DELLAs is also conjugated to the small ubiquitin-like modifier (SUMO) protein, which stabilizes DELLAs. Increased DELLA levels occur in the SUMO protease-deficient OVERLY TOLERANT TO SALT 1 and 2 (ots1 ots2) double mutants, especially under salt stress conditions...
October 19, 2016: Plant Reproduction
Jianbo Li, Huixia Jia, Xiaojiao Han, Jin Zhang, Pei Sun, Mengzhu Lu, Jianjun Hu
Salix psammophila is a desert shrub willow that has extraordinary adaptation to abiotic stresses and plays an important role in maintaining local ecosystems. Moreover, S. psammophila is regarded as a promising biomass feedstock because of its high biomass yields and short rotation coppice cycle. However, few suitable reference genes (RGs) for quantitative real-time polymerase chain reaction (qRT-PCR) constrain the study on normalization of gene expression in S. psammophila until now. Here, we investigated the expression stabilities of 14 candidate RGs across tissue types and under four abiotic stress treatments, including heat, cold, salt, and drought treatments...
2016: Frontiers in Plant Science
Junting Pan, Weidong Wang, Dongqin Li, Zaifa Shu, Xiaoli Ye, Pinpin Chang, Yuhua Wang
BACKGROUND: Nitric oxide (NO) functions as a critical signaling molecule in the low-temperature stress responses in plants, including polarized pollen tube growth in Camellia sinensis. Despite this, the potential mechanisms underlying the participation of NO in pollen tube responses to low temperature remain unclear. Here, we investigate alterations to gene expression in C. sinensis pollen tubes exposed to low-temperature stress and NO using RNA-Seq technology, in order to find the potential candidate genes related to the regulation of pollen tube elongation by NO under low-temperature stress...
October 18, 2016: BMC Genomics
Aleksei Agapov, Daria Esyunina, Danil Pupov, Andrey Kulbachinskiy
The Gre-family transcription factors bind within the secondary channel of bacterial RNA polymerase (RNAP) directly modulating its catalytic activities. Universally conserved Gre factors activate RNA cleavage by RNAP, by chelating catalytic metal ions in the RNAP active site, and facilitate both promoter escape and transcription elongation. Gfh factors are Deinococcus/Thermus -specific homologues of Gre factors whose transcription functions remain poorly understood. Recently, we found that Gfh1 and Gfh2 proteins from Deinococcus radiodurans dramatically stimulate RNAP pausing during transcription elongation in the presence of Mn(2+) but not Mg(2+) ions...
October 17, 2016: Biochemical Journal
Mozhgan Abasi, Zahra Bazi, Samira Mohammadi-Yeganeh, Masoud Soleimani, Vahid Haghpanah, Nosratollah Zargami, Hossein Ghanbarian
The small nuclear noncoding RNA (snRNA) 7SK is a highly conserved noncoding RNA of 331 nucleotides in animals, which is present in a nuclear ribonucleoprotein complex with proteins such as methylphosphate capping enzyme (MePCE), hexamethylene bisacetamide-inducible proteins 1 and 2 (HEXIM1 and HEXIM2) and La-related protein 7 (Larp7). Regulating the activity of the positive transcription elongation factor b (P-TEFb) is the key function of 7SK noncoding RNA. Recently, we have shown that 7SK snRNA over-expression reduces human embryonic kidney 293T cell line viability...
November 2016: Medical Oncology
Alexandros Strikoudis, Charalampos Lazaris, Thomas Trimarchi, Antonio L Galvao Neto, Yan Yang, Panagiotis Ntziachristos, Scott Rothbart, Shannon Buckley, Igor Dolgalev, Matthias Stadtfeld, Brian D Strahl, Brian D Dynlacht, Aristotelis Tsirigos, Iannis Aifantis
Pluripotent embryonic stem cells (ESCs) self-renew or differentiate into all tissues of the developing embryo and cell-specification factors are necessary to balance gene expression. Here we delineate the function of the PHD-finger protein 5a (Phf5a) in ESC self-renewal and ascribe its role in regulating pluripotency, cellular reprogramming and myoblast specification. We demonstrate that Phf5a is essential for maintaining pluripotency, since depleted ESCs exhibit hallmarks of differentiation. Mechanistically, we attribute Phf5a function to the stabilization of the Paf1 transcriptional complex and control of RNA polymerase II elongation on pluripotency loci...
October 17, 2016: Nature Cell Biology
Min Pang, Xin-Yan Bai, Yan Li, Ji-Zhong Bai, Li-Rong Yuan, Shou-An Ren, Xiao-Yun Hu, Xin-Ri Zhang, Bao-Feng Yu, Rui Guo, Hai-Long Wang
Clara cell protein (CC16) is an anti-inflammatory protein, which is expressed in the airway epithelium. It is involved in the development of airway inflammatory diseases, including chronic obstructive pulmonary disease and asthma. However, the exact molecular mechanism underlying its anti‑inflammatory action remains to be fully elucidated. The aim of the present study was to define the protein profiles of the anti‑inflammatory effect of CC16 in lipopolysaccharide (LPS)‑treated rat tracheal epithelial (RTE) cells using shotgun proteomics...
October 12, 2016: Molecular Medicine Reports
Jing-Fen Wu, Huang-Lung Tsai, Ignasius Joanito, Yi-Chen Wu, Chin-Wen Chang, Yi-Hang Li, Ying Wang, Jong Chan Hong, Jhih-Wei Chu, Chao-Ping Hsu, Shu-Hsing Wu
A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression...
October 13, 2016: Nature Communications
Chin Jian Yang, Lisa E Kursel, Anthony J Studer, Madelaine E Bartlett, Clinton J Whipple, John F Doebley
The effects of an allelic substitution at a gene often depend critically on genetic background, the genotype at other genes in the genome. During the domestication of maize from its wild ancestor (teosinte), an allelic substitution at teosinte branched (tb1) caused changes in both plant and ear architecture. The effects of tb1 on phenotype were shown to depend on multiple background loci including one called enhancer of tb1.2 (etb1.2) We mapped etb1.2 to a YABBY class transcription factor (ZmYAB2.1) and showed that the maize alleles of ZmYAB2...
October 11, 2016: Genetics
Pablo C Sandoval, J'Neka S Claxton, Jae Wook Lee, Fahad Saeed, Jason D Hoffert, Mark A Knepper
Vasopressin-mediated regulation of renal water excretion is defective in a variety of water balance disorders in humans. It occurs in part through long-term mechanisms that regulate the abundance of the aquaporin-2 water channel in renal collecting duct cells. Here, we use deep DNA sequencing in mouse collecting duct cells to ask whether vasopressin signaling selectively increases Aqp2 gene transcription or whether it triggers a broadly targeted transcriptional network. ChIP-Seq quantification of binding sites for RNA polymerase II was combined with RNA-Seq quantification of transcript abundances to identify genes whose transcription is regulated by vasopressin...
October 11, 2016: Scientific Reports
Merle Hantsche, Patrick Cramer
Transcription is the first step in expression of the genetic information in all living cells. The regulation of transcription underlies cell differentiation, organism development, and responses of living systems to changes in the environment. During transcription, the enzyme RNA polymerase uses DNA as a template to synthesize a complementary RNA copy from a gene. Here we summarize the progress in our understanding of the structural basis of eukaryotic gene transcription that has been made ten years after the Nobel Prize in Chemistry given to Roger Kornberg in 2006...
October 10, 2016: Angewandte Chemie
Elizabeth DeLaney, Donal S Luse
Pausing during the earliest stage of transcript elongation by RNA polymerase II (Pol II) is a nearly universal control point in metazoan gene expression. The substoichiometric Pol II subunit Gdown1 facilitates promoter proximal pausing in vitro in extract-based transcription reactions, out-competes the initiation/elongation factor TFIIF for binding to free Pol II and co-localizes with paused Pol II in vivo. However, we have shown that Gdown1 cannot functionally associate with the Pol II preinitiation complex (PIC), which contains TFIIF...
2016: PloS One
Mathilde Royer, David Cohen, Nathalie Aubry, Vera Vendramin, Simone Scalabrin, Federica Cattonaro, Marie-Béatrice Bogeat-Triboulot, Irène Hummel
Molecular regulation of growth must include spatial and temporal coupling of cell production and cell expansion. The underlying mechanisms, especially under environmental challenge, remain obscure. Spatial patterns of cell processes make the root apex well suited to deciphering stress signaling pathways, and to investigating both processes. Kinematics and RNA-sequencing were used to analyze the immediate growth response of hydroponically grown Populus nigra cuttings submitted to osmotic stress. About 7400 genes and unannotated transcriptionally active regions were differentially expressed between the division and elongation zones...
October 4, 2016: Journal of Experimental Botany
Kalpana Nanjareddy, Lourdes Blanco, Manoj Kumar Arthikala, Xochitl Alvarado-Affantranger, Carmen Quinto, Federico Sanchez, Miguel Lara
The target of rapamycin (TOR) protein kinase regulates metabolism, growth and life span in yeast, animals and plants in coordination with nutrient status and environmental conditions. The nutrient-dependent nature of TOR functionality makes this kinase a putative regulator of symbiotic associations involving nutrient acquisition. However, TOR's role in these processes remains to be understood. Here, we uncovered the role of TOR during the Phaseolus vulgaris-Rhizobium symbiotic interaction. TOR was expressed in all tested Phaseolus tissues, with higher expression levels in the root meristems and senesced nodules...
October 3, 2016: Plant Physiology
Matti Turtola, Georgiy A Belogurov
Universally conserved factors from NusG family bind at the upstream fork junction of transcription elongation complexes and modulate RNA synthesis in response to translation, processing, and folding of the nascent RNA. Escherichia coli NusG enhances transcription elongation in vitro by a poorly understood mechanism. Here we report that E. coli NusG slows Gre factor-stimulated cleavage of the nascent RNA, but does not measurably change the rates of single nucleotide addition and translocation by a non-paused RNA polymerase...
October 4, 2016: ELife
Zhan Zhao, Yadong Xue, Huili Yang, Huimin Li, Gaoyang Sun, Xiaofeng Zhao, Dong Ding, Jihua Tang
Internode length is one of the decisive factors affecting plant height (PH) and ear height (EH), which are closely associated with the lodging resistance, biomass and grain yield of maize. miRNAs, currently recognized as important transcriptional/ post-transcriptional regulators, play an essential role in plant growth and development. However, their roles in developing internodes under maize ears remain unclear. To identify the roles of miRNAs and their targets in the development of internodes under maize ears, six miRNA and two degradome libraries were constructed using the 7th, 8th and 9th internodes of two inbred lines, 'Xun928' and 'Xun9058', which had significantly different internode lengths...
2016: PloS One
Aileen S W Li, Yusuke Marikawa
Valproic acid (VPA), an antiepileptic drug, is a teratogen that causes neural tube and axial skeletal defects, although the mechanisms are not fully understood. We previously established a gastrulation model using mouse P19C5 stem cell embryoid bodies (EBs), which exhibits axial patterning and elongation morphogenesis in vitro. Here, we investigated the effects of VPA on the EB axial morphogenesis to gain insights into its teratogenic mechanisms. Axial elongation and patterning of EBs were inhibited by VPA at therapeutic concentrations...
September 29, 2016: Reproductive Toxicology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"