Read by QxMD icon Read


Aida Zulueta, Anna Caretti, Giuseppe Matteo Campisi, Andrea Brizzolari, Jose Luis Abad, Rita Paroni, Paola Signorelli, Riccardo Ghidoni
Exposure to cigarette smoke represents the most important risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is characterized by chronic inflammation of the airways, imbalance of proteolytic activity resulting in the destruction of lung parenchyma, alveolar hypoxia, oxidative stress, and apoptosis. Sphingolipids are structural membrane components whose metabolism is altered during stress. Known as apoptosis and inflammation inducer, the sphingolipid ceramide was found to accumulate in COPD airways and its plasma concentration increased as well...
April 13, 2017: Naunyn-Schmiedeberg's Archives of Pharmacology
Hyo Jung Kim, Jae Seon Kim, Seikwan Oh, Hwan-Soo Yoo
BACKGROUND: The increased risk of gallstone has been reported in patients with ATP-binding cassette (ABC) transporter polymorphism. The half-transporters ABCG5 and ABCG8 mediate the efflux of cholesterol in hepatocytes and the intestine. We investigated whether ceramide plays a role in cholesterol efflux through the ABC transporters. METHODS: Six-week-old C57BL/6J mice were assigned to 3 groups. The normal group (n = 5) was fed a normal chow diet, the cholesterol group (n = 10) was fed a lithogenic diet, and the myriocin group (n = 15) was fed the lithogenic diet and myriocin, a specific inhibitor of serine-palmitoyl transferase...
March 8, 2017: Digestive Diseases
Giorgio Cozza, Mauro Salvi, Vincent S Tagliabracci, Lorenzo A Pinna
Fam20C, also termed DMP-4 (dentin matrix protein 4) and G-CK (Golgi casein kinase) is an atypical protein kinase committed with the phosphorylation of casein and a plethora of other secreted proteins. Fam20C has been implicated in a number of human pathologies related to biomineralization, phosphate homeostasis, and neoplasia. The mode of regulation of Fam20C is still a matter of conjecture. In in vitro, Fam20C activity is stimulated several fold by sphingosine. To gain in vivo information about the physiological relevance of this observation, three cell lines expressing endogenous Fam20C, and one in which Fam20C has been knocked out with CRISPR/Cas9 technology have been examined for Fam20C activity under basal conditions and where sphingosine has been depleted by treatment with myriocin...
April 2017: FEBS Journal
Krzysztof Kurek, Marta Garbowska, Dominika M Ziembicka, Bartłomiej Łukaszuk, Jakub Rogowski, Adrian Chabowski, Jan Górski, Małgorzata Żendzian-Piotrowska
PURPOSE: The aim of this work was to assess the effect(s) of de novo ceramide synthesis inhibition on lipid metabolism in skeletal muscle tissue of type 1 diabetic rats. The latter seems to be of vital importance, since previous works have shown its positive influence on lipid metabolism and glucose homeostasis in the case of its counterpart - type 2 diabetes. MATERIALS/METHODS: The animals were randomly assigned to one of the following groups: C - control, M - myriocin (ceramide de novo synthesis inhibitor), D - diabetes (induced by streptozotocin injections); D+M - diabetes+myriocin...
May 9, 2016: Advances in Medical Sciences
Nicolas Lebesgue, Márton Megyeri, Alba Cristobal, Arjen Scholten, Silvia G Chuartzman, Yoav Voichek, Richard A Scheltema, Shabaz Mohammed, Anthony H Futerman, Maya Schuldiner, Albert J R Heck, Simone Lemeer
Sphingolipids (SLs) are essential components of cell membranes and are broad-range bioactive signaling molecules. SL levels must be tightly regulated as imbalances affect cellular function and contribute to pathologies ranging from neurodegenerative and metabolic disorders to cancer and aging. Deciphering how SL homeostasis is maintained and uncovering new regulators is required for understanding lipid biology and for identifying new targets for therapeutic interventions. Here we combine omics technologies to identify the changes of the transcriptome, proteome, and phosphoproteome in the yeast Saccharomyces cerevisiae upon SL depletion induced by myriocin...
February 3, 2017: Journal of Proteome Research
Shujuan Huang, Suling Huang, Xi Wang, Qingli Zhang, Jia Liu, Ying Leng
Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake...
2017: International Journal of Biological Sciences
Tilla S Worgall
PURPOSE OF REVIEW: Genome-wide association studies identified ORMDL3, a protein of the endoplasmic reticulum, as a significant asthma risk factor. ORMDL3 is one of three ORMDL proteins that integrate multiple signals to maintain sphingolipid homeostasis. Studies that investigated potential mechanisms for how increased ORMDL3 might affect asthma are summarized. RECENT FINDINGS: Investigations focused on decreased sphingolipid synthesis and on the unfolded protein response because ORMDL3 had been implicated in both...
March 2017: Current Opinion in Clinical Nutrition and Metabolic Care
Agnieszka U Blachnio-Zabielska, Marta Chacinska, Mikkel H Vendelbo, Piotr Zabielski
BACKGROUND/AIMS: Muscle bioactive lipids accumulation leads to several disorder states. The most common are insulin resistance (IR) and type 2 diabetes. There is an ongoing debate which of the lipid species plays the major role in induction of muscle IR. Our aim was to elucidate the role of particular lipid group in induction of muscle IR. METHODS: The analyses were performed on muscle from the following groups of rats: 1. Control, fed standard diet, 2 HFD, fed high fat diet, 3...
2016: Cellular Physiology and Biochemistry
Mireia Casasampere, Yadira F Ordóñez, Josefina Casas, Gemma Fabrias
BACKGROUND: Autophagy consists on the delivery of cytoplasmic material and organelles to lysosomes for degradation. Research on autophagy is a growing field because deciphering the basic mechanisms of autophagy is key to understanding its role in health and disease, and to paving the way to discovering novel therapeutic strategies. Studies with chemotherapeutic drugs and pharmacological tools support a role for dihydroceramides as mediators of autophagy. However, their effect on the autophagy outcome (cell survival or death) is more controversial...
February 2017: Biochimica et Biophysica Acta
Cristiane Bigatti Pereira, Nívea Pereira de Sá, Beatriz Martins Borelli, Carlos Augusto Rosa, Paulo Jorge Sanches Barbeira, Betania Barros Cota, Susana Johann
The antifungal effects of two eicosanoic acids, 2-amino-3,4-dihydroxy-2-25-(hydroxymethyl)-14-oxo-6,12-eicosenoic acid (compound 1) and myriocin (compound 2), isolated from Mycosphaerella sp. were evaluated against Cryptococcus neoformans and C. gattii. The compounds displayed antifungal activities against several isolates of C. neoformans and C. gattii, with minimal inhibitory concentration (MIC) values ranging from 0.49 to 7.82 μM for compound 1 and 0.48-1.95 μM for compound 2. In the checkerboard microtiter test, both compounds exhibited synergistic activity with amphotericin B against C...
November 2016: Microbial Pathogenesis
Ramakrishna Edukulla, Kira Lee Rehn, Bo Liu, Jaclyn W McAlees, Gurjit K Hershey, Yui Hsi Wang, Ian Lewkowich, Andrew W Lindsley
INTRODUCTION: Ceramide is the central substrate of sphingolipid metabolism and plays a key role in cellular signal transduction pathways, regulating apoptosis, differentiation, and chemotaxis. Alterations in airway ceramide levels are observed in multiple pulmonary diseases and recent human genetic association studies have linked dysregulation of sphingolipid regulatory genes with asthma pathogenesis. METHODS: Utilizing myriocin, a potent inhibitor of sphingolipid synthesis, we evaluated the immune regulatory role of de novo ceramide generation in vitro and in vivo...
September 2016: Immunity, Inflammation and Disease
Hiroyuki Ishijima, Ryuji Uchida, Masaki Ohtawa, Ariko Kondo, Kenichiro Nagai, Keisuke Shima, Kenichi Nonaka, Rokuro Masuma, Susumu Iwamoto, Hideyuki Onodera, Tohru Nagamitsu, Hiroshi Tomoda
The targets of antifungal antibiotics in clinical use are more limited than those of antibacterial antibiotics. Therefore, new antifungal antibiotics with different mechanisms of action are desired. In the course of our screening for antifungal antibiotics of microbial origins, new antifungal antibiotics, simplifungin (1) and valsafungins A (2) and B (3), were isolated from cultures of the fungal strains Simplicillium minatense FKI-4981 and Valsaceae sp. FKH-53, respectively. The structures of 1 to 3 including their absolute stereochemistries were elucidated using various spectral analyses including NMR and collision-induced dissociation (CID)-MS/MS as well as chemical approaches including modifications to the Mosher's method...
September 2, 2016: Journal of Organic Chemistry
Kuchuan Chen, Guang Lin, Nele A Haelterman, Tammy Szu-Yu Ho, Tongchao Li, Zhihong Li, Lita Duraine, Brett H Graham, Manish Jaiswal, Shinya Yamamoto, Matthew N Rasband, Hugo J Bellen
Mutations in Frataxin (FXN) cause Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder. Previous studies have proposed that loss of FXN causes mitochondrial dysfunction, which triggers elevated reactive oxygen species (ROS) and leads to the demise of neurons. Here we describe a ROS independent mechanism that contributes to neurodegeneration in fly FXN mutants. We show that loss of frataxin homolog (fh) in Drosophila leads to iron toxicity, which in turn induces sphingolipid synthesis and ectopically activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2)...
June 25, 2016: ELife
Frédéric J Zécri
Multiple sclerosis is a devastating chronic autoimmune disease affecting women and men of all ages. Inflammation of the central nervous system causes demyelination and ultimately neuropsychological dysfunction. Myriocin, a natural product with strong immunosuppressant activity was interrogated leading to a new class of immunomodulator with a unique mode of action. In this review, we will summarize these findings, the mechanism hypothesis and discuss the data's ultimately leading to the approval of Gilenya™ as the first oral treatment for multiple sclerosis...
June 2016: Current Opinion in Chemical Biology
Yi Zhang, Yan Huang, Anna Cantalupo, Paula S Azevedo, Mauro Siragusa, Jacek Bielawski, Frank J Giordano, Annarita Di Lorenzo
We recently discovered that endothelial Nogo-B, a membrane protein of the ER, regulates vascular function by inhibiting the rate-limiting enzyme, serine palmitoyltransferase (SPT), in de novo sphingolipid biosynthesis. Here, we show that endothelium-derived sphingolipids, particularly sphingosine-1-phosphate (S1P), protect the heart from inflammation, fibrosis, and dysfunction following pressure overload and that Nogo-B regulates this paracrine process. SPT activity is upregulated in banded hearts in vivo as well as in TNF-α-activated endothelium in vitro, and loss of Nogo removes the brake on SPT, increasing local S1P production...
April 21, 2016: JCI Insight
Sara García-Marqués, Francisca Randez-Gil, Sebastien Dupont, Elena Garre, Jose A Prieto
All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery...
June 2016: Biochimica et Biophysica Acta
Anna Caretti, Riccardo Torelli, Federica Perdoni, Monica Falleni, Delfina Tosi, Aida Zulueta, Josefina Casas, Maurizio Sanguinetti, Riccardo Ghidoni, Elisa Borghi, Paola Signorelli
BACKGROUND: Fungal infections develop in pulmonary chronic inflammatory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF). The available antifungal drugs may fail to eradicate fungal pathogens, that can invade the lungs and vessels and spread by systemic circulation taking advantage of defective lung immunity. An increased rate of sphingolipid de novo synthesis, leading to ceramide accumulation, was demonstrated in CF and COPD inflamed lungs...
June 2016: Biochimica et Biophysica Acta
M R Reforgiato, G Milano, G Fabriàs, J Casas, P Gasco, R Paroni, M Samaja, R Ghidoni, A Caretti, Paola Signorelli
The injury caused by myocardial reperfusion after ischemia can be contained by interventions aimed at reducing the inflammation and the oxidative stress that underlie exacerbation of tissue damage. Sphingolipids are a class of structural and signaling lipid molecules; among them, the inflammation mediator ceramide accumulates in the myocardium upon ischemia/reperfusion. Here, we show that, after transient coronary occlusion in mice, an increased de novo ceramide synthesis takes place at reperfusion in the ischemic area surrounding necrosis (area at risk)...
March 2016: Basic Research in Cardiology
Ahmad Alsahli, Kathryn Kiefhaber, Tziporah Gold, Munira Muluke, Hongfeng Jiang, Serge Cremers, Ulrike Schulze-Späte
Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA)...
2016: Calcified Tissue International
Aimee E Hodson, Trevor S Tippetts, Benjamin T Bikman
BACKGROUND: States of hyperinsulinemia, particularly insulin resistance and type 2 diabetes mellitus, are becoming remarkably common, with roughly half a billion people likely to suffer from the disorder within the next 15 years. Along with this rise has been an associated increased burden of cardiovascular disease. Considering type 2 diabetics treated with insulin are more likely to suffer from heart complications, we sought to determine the specific effect of insulin on ceramide-dependent cardiometabolic risk factors, including insulin resistance and altered heart mitochondrial physiology...
2015: Cardiovascular Diabetology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"