Read by QxMD icon Read

Hair cell regeneration

Prasong J Mekdara, Margot A B Schwalbe, Laura L Coughlin, Eric D Tytell
Fish use multiple sensory systems, including vision and their lateral line system, to maintain position and speed within a school. Although previous studies have shown that ablating the lateral line alters schooling behavior, no one has examined how the behavior recovers as the sensory system regenerates. We studied how schooling behavior changes in giant danios Devario aequipinnatus when their lateral line system is chemically ablated and after the sensory hair cells regenerate. We found that fish could school normally immediately after chemical ablation, but that they had trouble schooling one to two weeks after the chemical treatment, when the hair cells had fully regenerated...
March 12, 2018: Journal of Experimental Biology
Wen-Wei Luo, Xin-Wei Wang, Rui Ma, Fang-Lu Chi, Ping Chen, Ning Cong, Yu-Yan Gu, Dong-Dong Ren, Juan-Mei Yang
Notch inhibition is known to generate supernumerary hair cells (HCs) at the expense of supporting cells (SCs) in the mammalian inner ear. However, inhibition of Notch activity becomes progressively less effective at inducing SC-to-HC conversion in the postnatal cochlea and balance organs as the animal ages. It has been suggested that the SC-to-HC conversion capacity is inversely correlated with E-cadherin accumulation in postnatal mammalian utricles. However, whether E-cadherin localization is linked to the SC-to-HC conversion capacity in the mammalian inner ear is poorly understood...
2018: Frontiers in Molecular Neuroscience
Nahyun Choi, Soyoung Shin, Sun U Song, Jong-Hyuk Sung
Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms...
February 28, 2018: International Journal of Molecular Sciences
Teppei Noda, Steven J Meas, Jumpei Nogami, Yutaka Amemiya, Ryutaro Uchi, Yasuyuki Ohkawa, Koji Nishimura, Alain Dabdoub
Primary auditory neurons (PANs) play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs), comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming...
2018: Frontiers in Cell and Developmental Biology
Wei Liu, Matyas Molnar, Carolyn Garnham, Heval Benav, Helge Rask-Andersen
The human inner ear, which is segregated by a blood/labyrinth barrier, contains resident macrophages [CD163, ionized calcium-binding adaptor molecule 1 (IBA1)-, and CD68-positive cells] within the connective tissue, neurons, and supporting cells. In the lateral wall of the cochlea, these cells frequently lie close to blood vessels as perivascular macrophages. Macrophages are also shown to be recruited from blood-borne monocytes to damaged and dying hair cells induced by noise, ototoxic drugs, aging, and diphtheria toxin-induced hair cell degeneration...
2018: Frontiers in Immunology
Judith S Kempfle, Kim Nguyen, Christine Hamadani, Nicholas Koen, Albert S Edge, Boris A Kashemirov, David H Jung, Charles E McKenna
Hearing loss affects more than two-thirds of the elderly population, and more than 17% of all adults in the U.S. Sensorineural hearing loss related to noise exposure or aging is associated with loss of inner ear sensory hair cells (HCs), cochlear spiral ganglion neurons (SGNs), and ribbon synapses between HCs and SGNs, stimulating intense interest in therapies to regenerate synaptic function. 7,8-Dihydroxyflavone (DHF) is a selective and potent agonist of tropomyosin receptor kinase B (TrkB) and protects the neuron from apoptosis...
February 27, 2018: Bioconjugate Chemistry
Nada Tarek Hassan Mohamed, Neveen Ahmed AbdelAziz
Adult stem cells are somatic stem cells distributed all over the body. They represent a promising future for regenera-tive medicine because of their multiple advantages as they are widely available, accessible, easily stored and manipulated to a wide range of cells and with minimal invasive extraction. This review describes three examples of adult stem cells: oral mucosal epithelial stem cells, human immature dental pulp stem cells and hair follicle bulge stem cells that show an ability to correct limbal stem cell deficiency, their isolation and cultivation methods, feeder layers, carriers, markers expressed, successfulness to regenerate the ocular surface and mimic the corneal function in LSCD...
February 23, 2018: Current Stem Cell Research & Therapy
M Diensthuber, T Stöver
Despite impressive technical progress in the field of conventional hearing aids and implantable hearing systems, the hopes for the treatment of inner ear diseases such as hearing loss and tinnitus have become increasingly directed toward regenerative therapeutic approaches. This review discusses the currently most promising strategies for hair cell regeneration in the inner ear to treat hearing loss, including stem cell-based, gene transfer-based, and pharmacological interventions. Furthermore, previous milestones and ground-breaking work in this scientific field are identified...
February 15, 2018: HNO
Yong-Li Song, Ke-Yong Tian, Wen-Juan Mi, Zhong-Jia Ding, Yang Qiu, Fu-Quan Chen, Ding-Jun Zha, Jian-Hua Qiu
Cochlear progenitor cells are considered as one of the best candidates for hair cell regeneration, thus, the regulation of cochlear progenitor cell proliferation has become a focus in this field. Several genes expressed in the inner ear during postnatal development have been demonstrated to be involved in maintaining the proliferative potential of progenitor cells, but the mechanism for regulating the proliferation and differentiation of cochlear progenitor cells remains poorly understood. Telomerase reverse transcriptase (TERT) has rate limiting telomerase activity and the overexpression of TERT has been shown to promote cell proliferation in series of cell lines...
February 6, 2018: Molecular Medicine Reports
Qi Sun, Piul Rabbani, Makoto Takeo, Soung-Hoon Lee, Chae Ho Lim, En-Nekema Shandi Noel, M Mark Taketo, Peggy Myung, Sarah Millar, Mayumi Ito
Abnormal pigmentation is commonly seen in the wound scar. Despite advancements in the research of wound healing, little is known about the repopulation of melanocytes in the healed skin. Previous studies have demonstrated the capacity of melanocyte stem cells (McSCs) in the hair follicle to contribute skin epidermal melanocytes following injury in mice and humans. Here, we focused on the Wnt pathway, known to be a vital regulator of McSCs in efforts to better understand the regulation of follicle-derived epidermal melanocytes during wound healing...
February 8, 2018: Journal of Investigative Dermatology
Lingling Jiang, Jincao Xu, Ran Jin, Huanju Bai, Meiguang Zhang, Siyuan Yang, Xuebo Zhang, Xinwen Zhang, Zhongming Han, Shaoju Zeng
Unlike mammalian hair cells, which are essentially unable to regenerate after damage, avian hair cells have a robust capacity for regeneration. The prerequisite for understanding the above difference is knowing the genetic programming of avian hair cell regeneration. Although the major processes have been known, the precise molecular signaling that induces regeneration remains unclear. To address this issue, we performed a high-throughput transcriptomic analysis of gene expression during hair cell regeneration in the chick cochlea after antibiotic injury in vivo...
January 17, 2018: Hearing Research
Stephan Fuchs, Gunter Klohs, Malte Kornhuber, Rainer Finke
BACKGROUND:  Cutaneous aesthesia is frequently impaired following thermal injury. The perception of pressure and touch is compromised. METHODS:  We analysed 352 patient files retrospectively and tested the perception in deep burn-damaged skin of children. The skin regions examined were classified into groups according to treatment: group 1: necrosectomy + split-thickness skin graft; group 2: epifascial necrosectomy + split-thickness skin graft; group 3: epifascial necrosectomy + Integra® + split- thickness skin graft...
February 1, 2018: Handchirurgie, Mikrochirurgie, Plastische Chirurgie
Haiying Guo, Yizhan Xing, Yiming Zhang, Long He, Fang Deng, Xiaogen Ma, Yuhong Li
Dermal papilla (DP) plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells...
2018: PeerJ
Christopher A Neal, Jennifer G Nelson-Brantley, Michael S Detamore, Hinrich Staecker, Adam J Mellott
In mammals, mechanosensory hair cells that facilitate hearing lack the ability to regenerate, which has limited treatments for hearing loss. Current regenerative medicine strategies have focused on transplanting stem cells or genetic manipulation of surrounding support cells in the inner ear to encourage replacement of damaged stem cells to correct hearing loss. Yet, the extracellular matrix (ECM) may play a vital role in inducing and maintaining function of hair cells, and has not been well investigated. Using the cochlear ECM as a scaffold to grow adult stem cells may provide unique insights into how the composition and architecture of the extracellular environment aids cells in sustaining hearing function...
January 1, 2018: Journal of Visualized Experiments: JoVE
Shuichiro Takahashi, Daigo Hashimoto, Eiko Hayase, Reiki Ogasawara, Hiroyuki Ohigashi, Takahide Ara, Emi Yokoyama, Ko Ebata, Satomi Matsuoka, Geoffrey Hill, Junichi Sugita, Masahiro Onozawa, Takanori Teshima
Graft-versus-host disease (GVHD) is the major complication after allogeneic stem cell transplantation (SCT). Emerging evidence indicates that GVHD leads to injury of intestinal stem cells. However, it remains to be investigated whether skin stem cells could be targeted in skin GVHD. Lgr5+ hair follicle stem cells (HFSCs) contribute to folliculogenesis and have a multipotent capacity to regenerate all epithelial cells in repair. We studied the fate of Lgr5+ HFSCs after SCT and explored the novel treatment to protect Lgr5+ HFSCs against GVHD using murine models of SCT...
January 23, 2018: Blood
Rene C Adam, Hanseul Yang, Yejing Ge, Wen-Hui Lien, Ping Wang, Yilin Zhao, Lisa Polak, John Levorse, Sanjeethan C Baksh, Deyou Zheng, Elaine Fuchs
Tissue regeneration relies on resident stem cells (SCs), whose activity and lineage choices are influenced by the microenvironment. Exploiting the synchronized, cyclical bouts of tissue regeneration in hair follicles (HFs), we investigate how microenvironment dynamics shape the emergence of stem cell lineages. Employing epigenetic and ChIP-seq profiling, we uncover how signal-dependent transcription factors couple spatiotemporal cues to chromatin dynamics, thereby choreographing stem cell lineages. Using enhancer-driven reporters, mutagenesis, and genetics, we show that simultaneous BMP-inhibitory and WNT signals set the stage for lineage choices by establishing chromatin platforms permissive for diversification...
January 9, 2018: Cell Stem Cell
Mohammad-Reza Mahmoudian-Sani, Ameneh Mehri-Ghahfarrokhi, Morteza Hashemzadeh-Chaleshtori, Masoud Saidijam, Mohammad-Saeid Jami
In this review, we compared the potential of mesenchymal stem cells derived from bone marrow, adipose tissue and umbilical cord as suitable sources for regeneration of inner ear hair cells and auditory neurons. Our intensive literature search indicates that stem cells in some of adult mammalian tissues, such as bone marrow, can generate new cells under physiological and pathological conditions. Among various types of stem cells, bone marrow-derived mesenchymal stem cells are one of the most promising candidates for cell replacement therapy...
December 1, 2017: International Tinnitus Journal
Mi Hee Kwack, Jung Min Yang, Gong Hee Won, Moon Kyu Kim, Jung Chul Kim, Young Kwan Sung
Dermal papilla (DP) regulates the growth and cycling of hair follicles. Cultured DP cells are useful for the study of their role in relation to hair growth and regeneration. However, cultivation of human DP cells is tedious and difficult. In addition, cultured DP cells possess a relatively short replicative life span, requiring immortalized human DP cell lines. We previously established an immortalized human DP cell line, SV40T-hTERT-DPC, by introducing human telomerase reverse transcriptase (hTERT) gene into the transformed cell line, SV40T-DPC...
January 10, 2018: Biochemical and Biophysical Research Communications
Wen-Wei Luo, Zhao Han, Dong-Dong Ren, Xin-Wei Wang, Fang-Lu Chi, Juan-Mei Yang
Atoh1 overexpression in cochlear epithelium induces new hair cell formation. Use of adenovirus-mediated Atoh1 overexpression has mainly focused on the rat lesser epithelial ridge and induces ectopic hair cell regeneration. The sensory region of rat cochlea is difficult to transfect, thus new hair cells are rarely produced in situ in rat cochlear explants. After culturing rat cochleae in medium containing 10% fetal bovine serum, adenovirus successfully infected the sensory region as the width of the supporting cell area was significantly increased...
December 2017: Neural Regeneration Research
Yasuhisa Tamura, Kumi Takata, Asami Eguchi, Yosky Kataoka
Hair growth occurs periodically in a cycle that consists of three different phases: growth, regression, and resting. The length of each phase is regulated by both intrinsic and extrinsic factors throughout life, and influenced by physiological and pathological conditions. Elongation of the resting phase and shortening of the growth phase occur during physiological ageing and in baldness, respectively. In vivo discrimination of each phase of the hair cycle can be used to research for regeneration of hair follicles as well as to evaluate the efficacy of hair regrowth treatments in the same individual...
January 10, 2018: Scientific Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"