Read by QxMD icon Read

3D Bioprinting

Minoo Heidari Kani, Eng-Cheng Chan, Roger C Young, Trent Butler, Roger Smith, Jonathan W Paul
Research insights into uterine function and the mechanisms of labour have been hindered by the lack of suitable animal and cellular models. The use of traditional culturing methods limits the exploration of complex uterine functions, such as cell interactions, connectivity and contractile behaviour, as it fails to mimic the three-dimensional (3D) nature of uterine cell interactions in vivo. Animal models are an option, however, use of these models is constrained by ethical considerations as well as translational limitations to humans...
October 21, 2016: Annals of Biomedical Engineering
Jia Min Lee, Wai Yee Yeong
Bioprinting is an emerging technology that allows the assembling of both living and non-living biological materials into an ideal complex layout for further tissue maturation. Bioprinting aims to produce engineered tissue or organ in a mechanized, organized, and optimized manner. Various biomaterials and techniques have been utilized to bioprint biological constructs in different shapes, sizes and resolutions. There is a need to systematically discuss and analyze the reported strategies employed to fabricate these constructs...
October 21, 2016: Advanced Healthcare Materials
Xuan Zhou, Wei Zhu, Margaret Nowicki, Shida Miao, Haitao Cui, Benjamin Holmes, Robert I Glazer, Lijie Grace Zhang
Metastasis is one of the deadliest consequences of breast cancer, with bone being one of the primary sites of occurrence. Insufficient 3D biomimetic models currently exist to replicate this process in vitro. In this study, we developed a biomimetic bone matrix using 3D bioprinting technology to investigate the interaction between breast cancer (BrCa) cells and bone stromal cells (fetal osteoblasts and human bone marrow mesenchymal stem cells (MSCs)). A tabletop stereolithography 3D bioprinter was employed to fabricate a series of bone matrices consisting of osteoblasts/MSCs encapsulated in gelatin methacrylate (GelMA) hydrogel with nanocrystalline hydroxyapatite (nHA)...
October 21, 2016: ACS Applied Materials & Interfaces
Cheng Zhong, Hai-Yang Xie, Lin Zhou, Xiao Xu, Shu-Sen Zheng
BACKGROUND: Because of an increasing discrepancy between the number of potential liver graft recipients and the number of organs available, scientists are trying to create artificial liver to mimic normal liver function and therefore, to support the patient's liver when in dysfunction. 3D printing technique meets this purpose. The present study was to test the feasibility of 3D hydrogel scaffolds for liver engineering. METHODS: We fabricated 3D hydrogel scaffolds with a bioprinter...
October 2016: Hepatobiliary & Pancreatic Diseases International: HBPD INT
Kimberly A Homan, David B Kolesky, Mark A Skylar-Scott, Jessica Herrmann, Humphrey Obuobi, Annie Moisan, Jennifer A Lewis
Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen...
October 11, 2016: Scientific Reports
Xingliang Dai, Cheng Ma, Qing Lan, Tao Xu
Glioma is still difficult to treat because of its high malignancy, high recurrence rate, and high resistance to anticancer drugs. An alternative method for research of gliomagenesis and drug resistance is to use in vitro tumor model that closely mimics the in vivo tumor microenvironment. In this study, we established a 3D bioprinted glioma stem cell model, using modified porous gelatin/alginate/fibrinogen hydrogel that mimics the extracellular matrix. Glioma stem cells achieved a survival rate of 86.92%, and proliferated with high cellular activity immediately following bioprinting...
October 11, 2016: Biofabrication
Yu Shrike Zhang, Farideh Davoudi, Philipp Walch, Amir Manbachi, Xuan Luo, Valeria Dell'Erba, Amir K Miri, Hassan Albadawi, Andrea Arneri, Xiaoyun Li, Xiaoying Wang, Mehmet Remzi Dokmeci, Ali Khademhosseini, Rahmi Oklu
Pathologic thrombosis kills more people than cancer and trauma combined; it is associated with significant disability and morbidity, and represents a major healthcare burden. Despite advancements in medical therapies and imaging, there is often incomplete resolution of the thrombus. The residual thrombus can undergo fibrotic changes over time through infiltration of fibroblasts from the surrounding tissues and eventually transform into a permanent clot often associated with post-thrombotic syndrome. In order to understand the importance of cellular interactions and the impact of potential therapeutics to treat thrombosis, an in vitro platform using human cells and blood components would be beneficial...
October 18, 2016: Lab on a Chip
Ashwini Rahul Akkineni, Tilman Ahlfeld, Anja Lode, Michael Gelinsky
Three-dimensional extrusion of two different biomaterials in a core/shell (c/s) fashion has gained much interest in the last couple of years as it allows for fabricating constructs with novel and interesting properties. We now demonstrate that combining high concentrated (16.7 wt%) alginate hydrogels as shell material with low concentrated, soft biopolymer hydrogels as core leads to mechanically stable and robust 3D scaffolds. Alginate, chitosan, gellan gum, gelatin and collagen hydrogels were utilized successfully as core materials-hydrogels which are too soft for 3D plotting of open-porous structures without an additional mechanical support...
October 7, 2016: Biofabrication
Andrew C Daly, Susan E Critchley, Emily M Rencsok, Daniel J Kelly
Cartilage is a dense connective tissue with limited self-repair capabilities. Mesenchymal stem cell (MSC) laden hydrogels are commonly used for fibrocartilage and articular cartilage tissue engineering, however they typically lack the mechanical integrity for implantation into high load bearing environments. This has led to increased interested in 3D bioprinting of cell laden hydrogel bioinks reinforced with stiffer polymer fibres. The objective of this study was to compare a range of commonly used hydrogel bioinks (agarose, alginate, GelMA and BioINK™) for their printing properties and capacity to support the development of either hyaline cartilage or fibrocartilage in vitro...
October 7, 2016: Biofabrication
Yu Shrike Zhang, Andrea Arneri, Simone Bersini, Su-Ryon Shin, Kai Zhu, Zahra Goli-Malekabadi, Julio Aleman, Cristina Colosi, Fabio Busignani, Valeria Dell'Erba, Colin Bishop, Thomas Shupe, Danilo Demarchi, Matteo Moretti, Marco Rasponi, Mehmet Remzi Dokmeci, Anthony Atala, Ali Khademhosseini
Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium...
December 2016: Biomaterials
Nanbo Liu, Sha Huang, Bin Yao, Jiangfan Xie, Xu Wu, Xiaobing Fu
3D bioprinting matrices are novel platforms for tissue regeneration. Tissue self-organization is a critical process during regeneration that implies the features of organogenesis. However, it is not clear from the current evidences whether 3D printed construct plays a role in guiding tissue self-organization in vitro. Based on our previous study, we bioprinted a 3D matrix as the restrictive niche for direct sweat gland differentiation of epidermal progenitors by different pore structure (300-μm or 400-μm nozzle diameters printed) and reported a long-term gradual transition of differentiated cells into glandular morphogenesis occurs within the 3D construct in vitro...
October 3, 2016: Scientific Reports
Saime Burce Ozler, Ezgi Bakirci, Can Kucukgul, Bahattin Koc
Bioprinting is a relatively new technology where living cells with or without biomaterials are printed layer-by-layer in order to create three-dimensional (3D) living structures. In this article, novel bioprinting methodologies are developed to fabricate 3D biological structures directly from computer models using live multicellular aggregates. Multicellular aggregates made out of at least two cell types from fibroblast, endothelial and smooth muscle cells are prepared and optimized. A novel bioprinting approach is proposed in order to continuously extrude cylindrical multicellular aggregates through the bioprinter's glass microcapillaries...
September 30, 2016: Journal of Biomedical Materials Research. Part B, Applied Biomaterials
Katja Hölzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov
Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application...
2016: Biofabrication
Chee Kai Chua, Wai Yee Yeong, Jia An
The emergence of bioprinting in recent years represents a marvellous advancement in 3D printing technology. It expands the range of 3D printable materials from the world of non-living materials into the world of living materials. Biomaterials play an important role in this paradigm shift. This Special Issue focuses on biomaterials and bioprinting and contains eight articles covering a number of recent topics in this emerging area.
2016: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Kenichi Arai, Toshiko Yoshida, Motonori Okabe, Mitsuaki Goto, Tanveer Ahmad Mir, Chika Soko, Yoshinari Tsukamoto, Toshihiro Akaike, Toshio Nikaido, Kaixuan Zhou, Makoto Nakamura
The development of new three-dimensional (3D) cell culture system that maintains the physiologically relevant signals of hepatocytes is essential in drug discovery and tissue engineering research. Conventional two-dimensional (2D) culture yields cell growth, proliferation and differentiation. However, gene expression and signaling profiles can be different from in vivo environment. Here, we report the fabrication of a 3D culture system using an artificial scaffold and our custom-made inkjet 3D-bioprinter as a new strategy for studying liver-specific functions of hepatocytes...
September 19, 2016: Journal of Biomedical Materials Research. Part A
Christopher M Madl, Lily M Katz, Sarah C Heilshorn
Covalently-crosslinked hydrogels are commonly used as 3D matrices for cell culture and transplantation. However, the crosslinking chemistries used to prepare these gels generally cross-react with functional groups present on the cell surface, potentially leading to cytotoxicity and other undesired effects. Bio-orthogonal chemistries have been developed that do not react with biologically relevant functional groups, thereby preventing these undesirable side reactions. However, previously developed biomaterials using these chemistries still possess less than ideal properties for cell encapsulation, such as slow gelation kinetics and limited tuning of matrix mechanics and biochemistry...
June 7, 2016: Advanced Functional Materials
Gaurav Kaushik, Jeroen Leijten, Ali Khademhosseini
Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as 3D bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints...
September 19, 2016: Stem Cells
Rachel Kaye, Todd Goldstein, David Zeltsman, Daniel A Grande, Lee P Smith
Three dimensional (3D) printing is a novel technique that has evolved over the past 35 years and has the potential to revolutionize the field of medicine with its inherent advantages of customizability and the ability to create complex shapes with precision. It has been used extensively within the fields of orthopedics, dentistry, and craniofacial reconstruction with wide ranging utility including, medical modeling, surgical planning and the production of custom plates, screws and surgical guides. Furthermore, it has been used for similar means in the field of Otorhinolaryngology and also has potential to revolutionize the treatment of airway malacia...
October 2016: International Journal of Pediatric Otorhinolaryngology
Scott A Irvine, Subbu S Venkatraman
The 3D bioprinting of stem cells directly into scaffolds offers great potential for the development of regenerative therapies; in particular for the fabrication of organ and tissue substitutes. For this to be achieved; the lineage fate of bioprinted stem cell must be controllable. Bioprinting can be neutral; allowing culture conditions to trigger differentiation or alternatively; the technique can be designed to be stimulatory. Such factors as the particular bioprinting technique; bioink polymers; polymer cross-linking mechanism; bioink additives; and mechanical properties are considered...
2016: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Margaret A Nowicki, Nathan J Castro, Michael W Plesniak, Lijie Grace Zhang
Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation...
October 14, 2016: Nanotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"