Read by QxMD icon Read

Chromatin memory

John J Seeley, Sankar Ghosh
LPS is a potent trigger of macrophage-mediated inflammation. However, prolonged exposure to LPS induces a state of tolerance that reprograms the inflammatory response, resulting in reduced inflammatory cytokine production in vitro and in vivo. Recent evidence suggests that LPS tolerance also increases the expression of a subset of genes that may protect animals from systemic infection while they are in the tolerized state. However, a molecular basis for these selective changes in inflammatory gene expression during LPS tolerance has remained elusive...
October 25, 2016: Journal of Leukocyte Biology
Nicole Mons, Daniel Beracochea
A prime mechanism that contributes to the development and maintenance of alcoholism is the dysregulation of the hypothalamic-pituitary-adrenal axis activity and the release of glucocorticoids (cortisol in humans and primates, corticosterone in rodents) from the adrenal glands. In the brain, sustained, local elevation of glucocorticoid concentration even long after cessation of chronic alcohol consumption compromises functional integrity of a circuit, including the prefrontal cortex (PFC), the hippocampus (HPC), and the amygdala (AMG)...
2016: Frontiers in Psychiatry
Soya Shinkai, Tadasu Nozaki, Kazuhiro Maeshima, Yuichi Togashi
The mammalian genome is organized into submegabase-sized chromatin domains (CDs) including topologically associating domains, which have been identified using chromosome conformation capture-based methods. Single-nucleosome imaging in living mammalian cells has revealed subdiffusively dynamic nucleosome movement. It is unclear how single nucleosomes within CDs fluctuate and how the CD structure reflects the nucleosome movement. Here, we present a polymer model wherein CDs are characterized by fractal dimensions and the nucleosome fibers fluctuate in a viscoelastic medium with memory...
October 2016: PLoS Computational Biology
Tonatiuh Pena Centeno, Orr Shomroni, Magali Hennion, Rashi Halder, Ramon Vidal, Raza-Ur Rahman, Stefan Bonn
Recent evidence suggests that the formation and maintenance of memory requires epigenetic changes. In an effort to understand the spatio-temporal extent of learning and memory-related epigenetic changes we have charted genome-wide histone and DNA methylation profiles, in two different brain regions, two cell types, and three time-points, before and after learning. In this data descriptor we provide detailed information on data generation, give insights into the rationale of experiments, highlight necessary steps to assess data quality, offer guidelines for future use of the data and supply ready-to-use code to replicate the analysis results...
October 11, 2016: Scientific Data
Yifan Zhou, Daman Kumari, Nicholas Sciascia, Karen Usdin
BACKGROUND: Fragile X syndrome (FXS), a common cause of intellectual disability and autism, results from the expansion of a CGG-repeat tract in the 5' untranslated region of the FMR1 gene to >200 repeats. Such expanded alleles, known as full mutation (FM) alleles, are epigenetically silenced in differentiated cells thus resulting in the loss of FMRP, a protein important for learning and memory. The timing of repeat expansion and FMR1 gene silencing is controversial. METHODS: We monitored the repeat size and methylation status of FMR1 alleles with expanded CGG repeats in patient-derived induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) that were grown for extended period of time either as stem cells or differentiated into neurons...
2016: Molecular Autism
Nathan R Rose, Hamish W King, Neil P Blackledge, Nadezda A Fursova, Katherine Ji Ember, Roman Fischer, Benedikt M Kessler, Robert J Klose
Polycomb group (PcG) proteins function as chromatin-based transcriptional repressors that are essential for normal gene regulation during development. However, how these systems function to achieve transcriptional regulation remains very poorly understood. Here, we discover that the histone H2AK119 E3 ubiquitin ligase activity of Polycomb repressive complex 1 (PRC1) is defined by the composition of its catalytic subunits and is highly regulated by RYBP/YAF2-dependent stimulation. In mouse embryonic stem cells, RYBP plays a central role in shaping H2AK119 mono-ubiquitylation at PcG targets and underpins an activity-based communication between PRC1 and Polycomb repressive complex 2 (PRC2) which is required for normal histone H3 lysine 27 trimethylation (H3K27me3)...
October 5, 2016: ELife
Hongxi Sun, Yu Li, Bei Sun, Ningning Hou, Juhong Yang, Miaoyan Zheng, Jie Xu, Jingyu Wang, Yi Zhang, Xianwei Zeng, Chunyan Shan, Bai Chang, Liming Chen, Baocheng Chang
BACKROUND: Type 2 diabetes has become a global epidemic disease. Atorvastatin has become a cornerstone in the prevention and treatment of atherosclerosis. However, increasing evidence showed that statins can dose-dependently increase the risk of diabetes mellitus. The mechanism is not clear. OBJECTIVE: The Ras complex pathway (Ras/Raf/extracellular signal-regulated kinase [ERK]/cAMP response element-binding protein [CREB]) is the major pathway that regulates the gene transcription...
September 2016: Medicine (Baltimore)
Krzysztof Brzezinka, Simone Altmann, Hjördis Czesnick, Philippe Nicolas, Michal Gorka, Eileen Benke, Tina Kabelitz, Felix Jähne, Alexander Graf, Christian Kappel, Isabel Bäurle
Plants as sessile organisms can adapt to environmental stress to mitigate its adverse effects. As part of such adaptation they maintain an active memory of heat stress for several days that promotes a more efficient response to recurring stress. We show that this heat stress memory requires the activity of the FORGETTER1 (FGT1) locus, with fgt1 mutants displaying reduced maintenance of heat-induced gene expression. FGT1 encodes the Arabidopsis thaliana orthologue of Strawberry notch (Sno), and the protein globally associates with the promoter regions of actively expressed genes in a heat-dependent fashion...
September 28, 2016: ELife
Ill-Min Chung, Sarada Ketharnathan, Seung-Hyun Kim, Muthu Thiruvengadam, Mari Kavitha Rani, Govindasamy Rajakumar
Proximity ligation assays such as circularized chromosome conformation capture and high-throughput chromosome capture assays have shed light on the structural organization of the interphase genome. Functional topologically associating domains (TADs) that constitute the building blocks of genomic organization are disrupted and reconstructed during the cell cycle. Epigenetic memory, as well as the sequence of chromosomes, regulate TAD reconstitution. Sub-TAD domains that are invariant across cell types have been identified, and contacts between these domains, rather than looping, are speculated to drive chromatin folding...
2016: Genes
Salomé Adam, Juliette Dabin, Odile Chevallier, Olivier Leroy, Céline Baldeyron, Armelle Corpet, Patrick Lomonte, Olivier Renaud, Geneviève Almouzni, Sophie E Polo
Chromatin integrity is critical for cell function and identity but is challenged by DNA damage. To understand how chromatin architecture and the information that it conveys are preserved or altered following genotoxic stress, we established a system for real-time tracking of parental histones, which characterize the pre-damage chromatin state. Focusing on histone H3 dynamics after local UVC irradiation in human cells, we demonstrate that parental histones rapidly redistribute around damaged regions by a dual mechanism combining chromatin opening and histone mobilization on chromatin...
October 6, 2016: Molecular Cell
Wei Jiang, Lei Cao, Fang Wang, Hai Ge, Peng-Chao Wu, Xue-Wei Li, Gui-Hai Chen
Age-related cognitive decline has been associated with changes in endogenous hormones and epigenetic modification of chromatin, including histone acetylation. Developmental exposure to endocrine disrupting chemicals, such as bisphenol-A (BPA) that produces endocrine disruption and epigenetic changes, may be a risk factor for accelerating cognitive deficits during aging. Thus, we exposed CD-1 mice to BPA (0, 1, and 100 mg/l BPA in the drinking water) orally during puberty (from postnatal days 28 to 56) and investigated whether pubertal BPA exposure exacerbates the age-related impairment of spatial cognition in old age (18 months old) and whether serum sex and thyroid hormones or hippocampal histone acetylation (H3K9ac and H4K8ac) are associated with cognitive effects...
September 9, 2016: Age (2005-)
S V Satya Prakash Avva, Craig M Hart
Data implicate the Drosophila 32 kDa Boundary Element-Associated Factors BEAF-32A and BEAF-32B in both chromatin domain insulator element function and promoter function. They might also function as an epigenetic memory by remaining bound to mitotic chromosomes. Both proteins are made from the same gene. They differ in their N-terminal 80 amino acids, which contain single DNA-binding BED fingers. The remaining 200 amino acids are identical in the two proteins. The structure and function of the middle region of 120 amino acids is unknown, while the C-terminal region of 80 amino acids has a putative leucine zipper and a BESS domain and mediates BEAF-BEAF interactions...
2016: PloS One
E Lax, A Friedman, R Massart, R Barnea, L Abraham, D Cheishvili, M Zada, H Ahdoot, T Bareli, G Warhaftig, L Visochek, M Suderman, M Cohen-Armon, M Szyf, G Yadid
Reward-related memory is an important factor in cocaine seeking. One necessary signaling mechanism for long-term memory formation is the activation of poly(ADP-ribose) polymerase-1 (PARP-1), via poly(ADP-ribosyl)ation. We demonstrate herein that auto-poly(ADP-ribosyl)ation of activated PARP-1 was significantly pronounced during retrieval of cocaine-associated contextual memory, in the central amygdala (CeA) of rats expressing cocaine-conditioned place preference (CPP). Intra-CeA pharmacological and short hairpin RNA depletion of PARP-1 activity during cocaine-associated memory retrieval abolished CPP...
September 6, 2016: Molecular Psychiatry
Leah Houri-Ze'evi, Oded Rechavi
In Caenorhabditis elegans small RNAs can regulate genes across generations. The mysterious tendency of heritable RNA interference (RNAi) responses to terminate after 3-5 generations has been referred to as "the bottleneck to RNAi inheritance." We have recently shown that the re-setting of epigenetic inheritance after 3-5 generations is not due to passive dilution of the original RNA trigger, but instead results from an active, multigenerational, and small RNA-mediated regulatory pathway. In this "Point of View" manuscript we suggest that the process that leads to the erasure of the ancestral small RNA-encoded memory is a specialized type of germline reprogramming mechanism, analogous to the processes that robustly remove parental DNA methylation and histone modifications early in development in different organisms...
September 3, 2016: RNA Biology
Fátima Duarte-Aké, Eduardo Castillo-Castro, Felipe Barredo Pool, Francisco Espadas, Jorge M Santamaría, Manuel L Robert, Clelia De-la-Peña
Global DNA methylation changes caused by in vitro conditions are associated with the subculturing and phenotypic variation in Agave angustifolia Haw. While the relationship between the development of albinism and in vitro culture is well documented, the role of epigenetic processes in this development leaves some important questions unanswered. During the micropropagation of Agave angustifolia Haw., we found three different phenotypes, green (G), variegated (V) and albino (A). To understand the physiological and epigenetic differences among the somaclones, we analyzed several morphophysiological parameters and changes in the DNA methylation patterns in the three phenotypes during their in vitro development...
September 2, 2016: Plant Cell Reports
Marine Salery, Marc Dos Santos, Estefani Saint-Jour, Lara Moumné, Christiane Pagès, Vincent Kappès, Sébastien Parnaudeau, Jocelyne Caboche, Peter Vanhoutte
BACKGROUND: Addiction relies on persistent alterations of neuronal properties, which depends on gene regulation. Activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that modulates neuronal plasticity underlying learning and memory. Its role in cocaine-induced neuronal and behavioral adaptations remains elusive. METHODS: Acute cocaine-treated mice were used for quantitative reverse-transcriptase polymerase chain reaction, immunocytochemistry, and confocal imaging from striatum...
June 16, 2016: Biological Psychiatry
Sabine Anne-Kristin Fraschka, Rob Wilhelmus Maria Henderson, Richárd Bártfai
Histones, by packaging and organizing the DNA into chromatin, serve as essential building blocks for eukaryotic life. The basic structure of the chromatin is established by four canonical histones (H2A, H2B, H3 and H4), while histone variants are more commonly utilized to alter the properties of specific chromatin domains. H3.3, a variant of histone H3, was found to have diverse localization patterns and functions across species but has been rather poorly studied in protists. Here we present the first genome-wide analysis of H3...
2016: Scientific Reports
Sweta Srivas, Mahendra K Thakur
Recently, we reported a correlation of scopolamine mediated decline in memory consolidation with increase in the expression of DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) in the mouse hippocampus. Memory consolidation is a protein synthesis-dependent process which involves the expression of synaptic plasticity genes, particularly neuronal immediate early genes (IEGs). However, the mechanism of regulation of these genes during decline in memory is poorly understood. Therefore, we have studied the epigenetic regulation of expression of neuronal IEGs in scopolamine-induced amnesic mice...
August 23, 2016: Molecular Neurobiology
I De Toma, L Manubens Gil, S Ossowski, M Dierssen
One of the most challenging questions in neuroscience is to dissect how learning and memory, the foundational pillars of cognition, are grounded in stable, yet plastic, gene expression states. All known epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodelling, and noncoding RNAs regulate brain gene expression, both during neurodevelopment and in the adult brain in processes related to cognition. On the other hand, alterations in the various components of the epigenetic machinery have been linked to well-known causes of intellectual disability disorders (IDDs)...
2016: Neural Plasticity
Sarah Kinkley, Johannes Helmuth, Julia K Polansky, Ilona Dunkel, Gilles Gasparoni, Sebastian Fröhler, Wei Chen, Jörn Walter, Alf Hamann, Ho-Ryun Chung
The combinatorial action of co-localizing chromatin modifications and regulators determines chromatin structure and function. However, identifying co-localizing chromatin features in a high-throughput manner remains a technical challenge. Here we describe a novel reChIP-seq approach and tailored bioinformatic analysis tool, normR that allows for the sequential enrichment and detection of co-localizing DNA-associated proteins in an unbiased and genome-wide manner. We illustrate the utility of the reChIP-seq method and normR by identifying H3K4me3 or H3K27me3 bivalently modified nucleosomes in primary human CD4(+) memory T cells...
2016: Nature Communications
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"