Read by QxMD icon Read


Xiaocui Ma, Chong Chen, Minmin Yang, Xinchun Dong, Wei Lv, Qingwei Meng
Chilling stress severely affects the growth, development and productivity of crops. Chloroplast, a photosynthesis site, is extremely sensitive to chilling stress. In this study, the functions of a gene encoding a cold-regulated protein (SlCOR413IM1) under chilling stress were investigated using sense and antisense transgenic tomatoes. Under chilling stress, SlCOR413IM1 expression was rapidly induced and the sense lines exhibited better growth state of seedlings and grown tomato plants. Overexpression of SlCOR413IM1 alleviated chilling-induced damage to the chloroplast membrane and structure, whereas suppression of SlCOR413IM1 aggravated the damage to chloroplast...
January 5, 2018: Plant Physiology and Biochemistry: PPB
Weronika Czarnocka, Stanisław Karpiński
In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR)...
January 10, 2018: Free Radical Biology & Medicine
V Kumar, B P Chandra, V Sinha
Biomass fires impact global atmospheric chemistry. The reactive compounds emitted and formed due to biomass fires drive ozone and organic aerosol formation, affecting both air quality and climate. Direct hydroxyl (OH) Reactivity measurements quantify total gaseous reactive pollutant loadings and comparison with measured compounds yields the fraction of unmeasured compounds. Here, we quantified the magnitude and composition of total OH reactivity in the north-west Indo-Gangetic Plain. More than 120% increase occurred in total OH reactivity (28 s-1 to 64 s-1) and from no missing OH reactivity in the normal summertime air, the missing OH reactivity fraction increased to ~40 % in the post-harvest summertime period influenced by large scale biomass fires highlighting presence of unmeasured compounds...
January 12, 2018: Scientific Reports
Reza Yarani, Takehiko Shiraishi, Peter E Nielsen
Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginine peptide nucleic acid (PNA) conjugates were investigated in terms of PCI assisted cellular activity. It is found that tetramethylrhodamine and Alexa Fluor 555 conjugated octaarginine PNA upon irradiation exhibit more than ten-fold increase in antisense activity in the HeLa pLuc705 luciferase splice correction assay...
January 12, 2018: Scientific Reports
Indrajit Shown, Satyanarayana Samireddi, Yu-Chung Chang, Raghunath Putikam, Po-Han Chang, Amr Sabbah, Fang-Yu Fu, Wei-Fu Chen, Chih-I Wu, Tsyr-Yan Yu, Po-Wen Chung, M C Lin, Li-Chyong Chen, Kuei-Hsien Chen
Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS2 (SnS2-C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS2 lattice, resulting in different photophysical properties as compared with undoped SnS2...
January 12, 2018: Nature Communications
Chao Liu, Justin M Notestein, Eric Weitz, Kimberly A Gray
The reduction of CO2 is a promising route to produce valuable chemicals or fuels and create C-neutral resource cycles. Many different approaches to CO2 reduction have been investigated, but the ability of vacuum UV (VUV) irradiation to cleave C-O bonds has remained largely unexplored for use in processes that convert CO2 into useful products. Compared with other photo-driven CO2 conversion processes, here we demonstrate that VUV-initiated CO2 reduction can achieve much greater conversion under common photochemical reaction conditions when H2 and non-reducible oxides are present...
January 12, 2018: ChemSusChem
Lulu Hu, Hao Li, Chang'an Liu, Yuxiang Song, Mengling Zhang, Hui Huang, Yang Liu, Zhenhui Kang
Chirality has attracted extensive attention in many fields ranging from chemistry to life sciences. Carbon dots (CDs) with good biocompatibility and unique photochemical properties have become a new star in the nanocarbon family. Endowed with chirality, CDs will exhibit more marvellous properties and bridge the fields of material chemistry and life sciences tightly. Herein, we report a facile one-step alkali-assisted electrochemical method to fabricate chiral CDs from cysteine (cys). We showed the chiral evolution of CDs with highly symmetrical circular dichroism (CD) signals in the range from 205 to 350 nm...
January 12, 2018: Nanoscale
Dorit Shemesh, Robert Benny Gerber
The photochemistry of acrylic acid is of considerable atmospheric importance. However, the mechanisms and the timescales of the reactions involved are unknown. In this work, the products, yields and reaction pathways of acrylic acid photochemistry are investigated theoretically by molecular dynamics simulations on the ππ* excited state. Two methods were used to describe the excited state: the semi-empirical OM2/MRCI and the ab initio ADC(2). Over one hundred trajectories were computed with each method. A rich variety of reaction channels including mechanisms, timescales and yields, are predicted for the single potential energy surface used...
January 11, 2018: Journal of Physical Chemistry Letters
Ao Li, Claudia Turro, Jeremy J Kodanko
Photocaging allows for precise spatiotemporal control over the release of biologically active compounds with light. Most photocaged molecules employ organic photolabile protecting groups; however, biologically active compounds often contain functionalities such as nitriles and aromatic heterocycles that cannot be caged with organic groups. Despite their prevalence, only a few studies have reported successful caging of nitriles and aromatic heterocycles. Recently, Ru(ii)-based photocaging has emerged as a powerful method for the release of bioactive molecules containing these functional groups, in many cases providing high levels of spatial and temporal control over biological activity...
January 11, 2018: Chemical Communications: Chem Comm
Di-Chang Zhong, Wen-Ju Liu, Hai-Hua Huang, Ting Ouyang, Long Jiang, Wen Zhang, Tong-Bu Lu
A catalyst developed from a Cu(II) complex of (Et4N)[Cu(pyN2Me2)(HCO2)]∙0.5CH3OH∙H2O (1∙0.5CH3OH∙H2O; pyN2Me2 = bis(2,6-dimethylphenyl)-2,6-pyridinedicarboxamidate(2-)) shows a high activity to catalyze the reduction reaction of CO2 to CO driven by visible light in 4:1 acetonitrile/water (v:v) using [Ru(phen)3](PF6)2 as photosensitizer and TEOA as sacrificial reductant, with a high TON of 9900 and a high selectivity of 98%. The results of isotope labeling experiment, durable test and energy dispersive spectroscopy reveal that 1 is robust during the photocatalytic process...
January 11, 2018: Chemistry: a European Journal
Nalaka Geekiyanage, Uromi Manage Goodale, Kunfang Cao, Kaoru Kitajima
Karst hills, that is, jagged topography created by dissolution of limestone and other soluble rocks, are distributed extensively in tropical forest regions, including southern parts of China. They are characterized by a sharp mosaic of water and nutrient availability, from exposed hilltops with poor soil development to valleys with occasional flooding, to which trees show species-specific distributions. Here we report the relationship of leaf functional traits to habitat preference of tropical karst trees. We described leaf traits of 19 tropical tree species in a seasonal karst rainforest in Guangxi Province, China, 12 species in situ and 13 ex situ in a non-karst arboretum, which served as a common garden, with six species sampled in both...
January 2018: Ecology and Evolution
Zhi Zhuang Wu, Ye Qing Ying, Yuan Bin Zhang, Yu Fang Bi, An Ke Wang, Xu Hua Du
The aim of this study was to explore whether nutrition supply can improve the drought tolerance of Moso bamboo under dry conditions. One-year-old seedlings were exposed to two soil water content levels [wellwatered, 70 ± 5% soil-relative-water-content (SRWC) and drought stress, 30 ± 5% SRWC] and four combinations of nitrogen (N) and phosphorus (P) supply (low-N, low-P, LNLP; low-N, high-P, LNHP; high-N, high-P, HNHP; and high-N, low-P, HNLP) for four months. Plant growth, photosynthesis, chlorophyll fluorescence, water use efficiency and cell membrane stability were determined...
January 10, 2018: Scientific Reports
Shogo Nakagawa, Hajime Nishimura, Fumihiro Kodera
In this study, we developed a new chlorine gas detection method using anodic oxidation and a photochemical reaction. Chlorine gas was temporarily solvated with an aprotic polar solvent having an extensive potential range in the positive direction, and the solvated chlorine molecule was detected by an anodic oxidation reaction. In addition, when combined with ultraviolet light irradiation, we could detect high sensitivity using the photochemical reaction.
2018: Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry
Junping Chen, John J Burke, Zhanguo Xin
BACKGROUND: Photosynthetic systems are known to be sensitive to high temperature stress. To maintain a relatively "normal" level of photosynthetic activities, plants employ a variety of adaptive mechanisms in response to environmental temperature fluctuations. Previously, we reported that the chloroplast-targeted AtFtsH11 protease played an essential role for Arabidopsis plants to survive at high temperatures and to maintain normal photosynthetic efficiency at moderately elevated temperature...
January 10, 2018: BMC Plant Biology
Alberto Fabrizio, Clémence Corminboeuf
In the last two decades, linear-response time-dependent density functional theory (LR-TDDFT) has become one of the most widely used approaches for the computation of the excited-state properties of atoms and molecules. Despite its success in describing the photochemistry and the photophysics of a vast majority of molecular systems, its domain of applicability has been limited by several substantial drawbacks. Commonly identified problems of LR-TDDFT include the correct description of Rydberg states, charge-transfer excited states, doubly excited states, and nearly degenerate states...
January 12, 2018: Journal of Physical Chemistry Letters
Lihua Zhang, Melbert Jeem, Kazumasa Okamoto, Seiichi Watanabe
Recently, metal oxide nanocrystallites have been synthesized through a new pathway, i.e., the submerged photosynthesis of crystallites (SPSC), and flower-like ZnO nanostructures have been successfully fabricated via this method. However, the photochemical reactions involved in the SPSC process and especially the role of light are still unclear. In the present work, we discuss the reaction mechanism for SPSC-fabricated ZnO nanostructures in detail and clarify the role of light in SPSC. The results show that both photoinduced reactions and hydrothermal reactions are involved in the SPSC process...
January 9, 2018: Scientific Reports
Sakar Mohan, Nguyen Chinh-Chien, Vu Manh-Hiep, Trong-On Do
The photo-assisted catalytic reaction, conventionally known as photocatalysis, is blooming into the field of energy and environmental applications. It is widely known that the discovery of TiO2-assited photochemical reactions has led to achieve several unique applications such as degradation of pollutants in water and air, hydrogen production through water splitting, fuel conversion, cancer treatment, anti-bacterial activity, self-cleaning glasses and concrete, etc. These multifaceted applications of this phenomenon can be enriched and expanded further if this process is equipped with more tools and functions...
January 8, 2018: ChemSusChem
Ernesto Arbeloa, Carlos Mario Previtali, Sonia Graciela Bertolotti
The photophysical and photochemical properties of the xanthene dyes Eosin-Y (Eos), Erythrosin-B (Ery) and Rose Bengal (RB) were evaluated in the presence of amino-terminated polyamido-amine (PAMAM) dendrimers of relatively high generations (G3-G5), in alkaline aqueous solution. UV-Vis absorption and fluorescence spectra of the dyes showed bathochromic shifts, which correlated with the size of the dendrimer. From absorption data binding constant (Kbind) were calculated. High Kbind values resulted, indicating a strong interaction between both molecules...
January 7, 2018: Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry
A C Rohr
A wealth of literature exists regarding the pulmonary effects of ozone, a photochemical pollutant produced by the reaction of nitrogen oxide and volatile organic precursors in the presence of sunlight. This paper focuses on epidemiological panel studies and human clinical studies of ozone exposure, and discusses issues specific to this pollutant that may influence study design and interpretation as well as other, broader considerations relevant to ozone-health research. The issues are discussed using examples drawn from the wider literature...
January 9, 2018: Journal of the Air & Waste Management Association
Orestis Antonoglou, Julietta Moustaka, Ioannis Dimosthenis Adamakis, Ilektra Sperdouli, Anastasia A Pantazaki, Michael Moustakas, Catherine Dendrinou-Samara
Inorganic nanoparticles (NPs) have been proposed as alternative fertilizers to suppress plant disease and increase crop yield. However, phytotoxicity of NPs remains a key factor for their massive employment in agricultural applications. In order to investigate new effective, non phytotoxic and inexpensive fungicides, in the present study CuZn bimetallic nanoparticles (BNPs) have been synthesized as antifungals, while assessment of photosystem II (PSII) efficiency by chlorophyll fluorescence imaging analysis is utilized as an effective and non-invasive phytotoxicity evaluation method...
January 9, 2018: ACS Applied Materials & Interfaces
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"